-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdfc.py
289 lines (241 loc) · 12.5 KB
/
dfc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
import torch
import wandb
from sklearn.metrics import normalized_mutual_info_score
from torch import nn
from torch.nn import Parameter
from adverserial import AdversarialNetwork, adv_loss
from dataloader import mnist_usps
from eval import predict, cluster_accuracy, balance, tsne_visualization
from utils import set_seed, AverageMeter, aff, target_distribution, inv_lr_scheduler
import matplotlib.pyplot as plt
class ClusterAssignment(nn.Module):
def __init__(self, cluster_number, embedding_dimension, alpha, cluster_centers):
"""
Module to handle the soft assignment, for a description see in 3.1.1. in Xie/Girshick/Farhadi,
where the Student's t-distribution is used measure similarity between feature vector and each
cluster centroid.
Args:
cluster_number: number of clusters
embedding_dimension: embedding dimension of feature vectors
alpha: representing the degrees of freedom in the t-distribution, default 1.0
cluster_centers: clusters centers to initialise, if None then use Xavier uniform
"""
super(ClusterAssignment, self).__init__()
self.embedding_dimension = embedding_dimension
self.cluster_number = cluster_number
self.alpha = alpha
if cluster_centers is None:
initial_cluster_centers = torch.zeros(
self.cluster_number,
self.embedding_dimension,
dtype=torch.float
)
nn.init.xavier_uniform_(initial_cluster_centers)
else:
initial_cluster_centers = cluster_centers
self.cluster_centers = Parameter(initial_cluster_centers)
def forward(self, batch):
"""
Compute the soft assignment for a batch of feature vectors, returning a batch of assignments
for each cluster.
Args:
batch (FloatTensor): [batch size, embedding dimension]
Returns:
FloatTensor [batch size, number of clusters]
"""
norm_squared = torch.sum((batch.unsqueeze(1) - self.cluster_centers) ** 2, 2)
numerator = 1.0 / (1.0 + (norm_squared / self.alpha))
return numerator / torch.sum(numerator, dim=1, keepdim=True)
class DFC(nn.Module):
def __init__(self, cluster_number, hidden_dimension, alpha=1):
"""
Module which holds all the moving parts of the DEC algorithm, as described in
Xie/Girshick/Farhadi; this includes the AutoEncoder stage and the ClusterAssignment stage.
Args:
cluster_number: number of clusters
hidden_dimension: hidden dimension, output of the encoder
alpha: parameter representing the degrees of freedom in the t-distribution, default = 1
"""
super(DFC, self).__init__()
self.hidden_dimension = hidden_dimension
self.cluster_number = cluster_number
self.alpha = alpha
self.assignment = ClusterAssignment(cluster_number, self.hidden_dimension, alpha, cluster_centers=None)
def forward(self, batch):
"""
Compute the cluster assignment using the ClusterAssignment after running the batch
through the encoder part of the associated AutoEncoder module.
Args:
batch (FloatTensor): [batch size, embedding dimension]
Returns:
FloatTensor: [batch_size, number of clusters]
"""
return self.assignment(batch)
def get_parameters(self):
return [{"params": self.parameters(), "lr_mult": 1}]
def train(args, dataloader_list, encoder, encoder_group_0=None, encoder_group_1=None, dfc_group_0=None,
dfc_group_1=None, device='cpu', centers=None, get_loss_trade_off=lambda step: (10, 10, 10), save_name='DFC'):
"""Trains DFC and optionally the critic,
automatically saves when finished training
Args:
args: Namespace object which contains config set from argument parser
{
lr,
seed,
iters,
log_dir,
test_interval,
adv_multiplier,
dfc_hidden_dim
}
dataloader_list (list): this list may consist of only 1 dataloader or multiple
encoder: Encoder to use
encoder_group_0: Optional pre-trained golden standard model
encoder_group_1: Optional pre-trained golden standard model
dfc_group_0: Optional cluster centers file obtained with encoder_group_0
dfc_group_1: Optional cluster centers file obtained with encoder_group_1
device: Device configuration
centers: Initial centers clusters if available
get_loss_trade_off: Proportional importance of individual loss functions
save_name: Prefix for save files
Returns:
DFC: A trained DFC model
"""
set_seed(args.seed)
if args.half_tensor:
torch.set_default_tensor_type('torch.HalfTensor')
dfc = DFC(cluster_number=args.cluster_number, hidden_dimension=args.dfc_hidden_dim).to(device)
wandb.watch(dfc)
critic = AdversarialNetwork(in_feature=args.cluster_number,
hidden_size=32,
max_iter=args.iters,
lr_mult=args.adv_multiplier).to(device)
wandb.watch(critic)
if not (centers is None):
cluster_centers = centers.clone().detach().requires_grad_(True).to(device)
with torch.no_grad():
print("loading clustering centers...")
dfc.state_dict()['assignment.cluster_centers'].copy_(cluster_centers)
encoder_param = encoder.get_parameters() if args.encoder_type == 'vae' else [
{"params": encoder.parameters(), "lr_mult": 1}]
optimizer = torch.optim.Adam(dfc.get_parameters() + encoder_param + critic.get_parameters(), lr=args.dec_lr,
weight_decay=5e-4)
criterion_c = nn.KLDivLoss(reduction="sum")
criterion_p = nn.MSELoss(reduction="sum")
C_LOSS = AverageMeter()
F_LOSS = AverageMeter()
P_LOSS = AverageMeter()
partition_loss_enabled = True
if not encoder_group_0 or not encoder_group_1 or not dfc_group_0 or not dfc_group_1:
print("Missing Golden Standard models, switching to DEC mode instead of DFC.")
partition_loss_enabled = False
if partition_loss_enabled:
encoder_group_0.eval(), encoder_group_1.eval()
dfc_group_0.eval(), dfc_group_1.eval()
print("Start training")
assert 0 < len(dataloader_list) < 3
len_image_0 = len(dataloader_list[0])
len_image_1 = len(dataloader_list[1]) if len(dataloader_list) == 2 else None
for step in range(args.iters):
encoder.train()
dfc.train()
if step % len_image_0 == 0:
iter_image_0 = iter(dataloader_list[0])
if len_image_1 and step % len_image_1 == 0:
iter_image_1 = iter(dataloader_list[1])
image_0, _ = iter_image_0.__next__()
image_0 = image_0.to(device)
if not (len_image_1 is None):
image_1, _ = iter_image_1.__next__()
image_1 = image_1.to(device)
image = torch.cat((image_0, image_1), dim=0)
else:
image_1 = None
image = torch.cat((image_0,), dim=0)
if args.encoder_type == 'vae':
z, _, _ = encoder(image)
elif args.encoder_type == 'resnet50':
z = encoder(image)
else:
raise Exception('Wrong encoder type, how did you get this far in running the code?')
output = dfc(z)
features_enc_0 = encoder_group_0(image_0)[0] if args.encoder_type == 'vae' else encoder_group_0(image_0)
predict_0 = dfc_group_0(features_enc_0)
features_enc_1 = encoder_group_1(image_1)[0] if args.encoder_type == 'vae' else encoder_group_1(image_1)
predict_1 = dfc_group_1(features_enc_1) if not (image_1 is None) else None
output_0, output_1 = output[0:args.bs, :], output[args.bs:args.bs * 2, :] if not (predict_1 is None) else None
target_0, target_1 = target_distribution(output_0).detach(), target_distribution(output_1).detach() if not (
predict_1 is None) else None
# Equaition (5) in the paper
# output_0 and output_1 are probability distribution P of samples being assinged to a class in k
# target_0 and target_1 are auxiliary distribuion Q calculated based on P. Eqation (4) in the paper
if not (output_1 is None):
clustering_loss = 0.5 * criterion_c(output_0.log(), target_0) + 0.5 * criterion_c(output_1.log(), target_1)
else:
clustering_loss = criterion_c(output_0.log(), target_0)
# Equation (2) in the paper
# output = D(A(F(X)))
# critic is the distribuition of categorical sensitive subgroup variable G (?)
if len(dataloader_list) > 1:
fair_loss, critic_acc = adv_loss(output, critic, device=device)
else:
fair_loss, critic_acc = 0, 0
if partition_loss_enabled:
# Equation (3) in the paper
# output_0 and output_1 are the output of the pretrained encoder
# predict_0 and predict_1 are the soft cluster assignments of the DFC.
# loss is high if the outputs and predictions (and this the cluster structures) differ.
if not (predict_1 is None):
partition_loss = 0.5 * criterion_p(aff(output_0), aff(predict_0).detach()) \
+ 0.5 * criterion_p(aff(output_1), aff(predict_1).detach())
else:
partition_loss = criterion_p(aff(output_0), aff(predict_0).detach())
else:
partition_loss = 0
loss_trade_off = get_loss_trade_off(step)
if args.encoder_type == 'resnet50' and args.dataset == 'office_31': # alpha_s
loss_trade_off = list(loss_trade_off)
loss_trade_off[1] = ((512 / 128) ** 2) * (31 / 10)
total_loss = loss_trade_off[0] * fair_loss + loss_trade_off[1] * partition_loss + loss_trade_off[
2] * clustering_loss
optimizer = inv_lr_scheduler(optimizer, args.lr, step, args.iters)
optimizer.zero_grad()
total_loss.backward()
optimizer.step()
C_LOSS.update(clustering_loss)
F_LOSS.update(fair_loss)
P_LOSS.update(partition_loss)
wandb.log({f"{save_name} Train C Loss Avg": C_LOSS.avg, f"{save_name} Train F Loss Avg": F_LOSS.avg,
f"{save_name} Train P Loss Avg": P_LOSS.avg, f"{save_name} step": step,
f"{save_name} Critic ACC": critic_acc})
wandb.log({f"{save_name} Train C Loss Cur": C_LOSS.val, f"{save_name} Train F Loss Cur": F_LOSS.val,
f"{save_name} Train P Loss Cur": P_LOSS.val, f"{save_name} step": step})
if step % args.test_interval == args.test_interval - 1 or step == 0:
predicted, labels = predict(dataloader_list, encoder, dfc, device=device, encoder_type=args.encoder_type)
predicted, labels = predicted.cpu().numpy(), labels.numpy()
_, accuracy = cluster_accuracy(predicted, labels, args.cluster_number)
nmi = normalized_mutual_info_score(labels, predicted, average_method="arithmetic")
bal, en_0, en_1 = balance(predicted, len_image_0, k=args.cluster_number)
wandb.log(
{f"{save_name} Train Accuracy": accuracy, f"{save_name} Train NMI": nmi, f"{save_name} Train Bal": bal,
f"{save_name} Train Entropy 0": en_0,
f"{save_name} Train Entropy 1": en_1, f"{save_name} step": step})
print("Step:[{:03d}/{:03d}] "
"Acc:{:2.3f};"
"NMI:{:1.3f};"
"Bal:{:1.3f};"
"En:{:1.3f}/{:1.3f};"
"Clustering.loss:{C_Loss.avg:3.2f};"
"Fairness.loss:{F_Loss.avg:3.2f};"
"Partition.loss:{P_Loss.avg:3.2f};".format(step + 1, args.iters, accuracy, nmi, bal, en_0,
en_1, C_Loss=C_LOSS, F_Loss=F_LOSS, P_Loss=P_LOSS))
# log tsne visualisation
if args.encoder_type == "vae":
tsne_img = tsne_visualization(dataloader_list, encoder, args.cluster_number,
encoder_type=args.encoder_type, device=device)
if not (tsne_img is None):
wandb.log({f"{save_name} TSNE": plt, f"{save_name} step": step})
torch.save(dfc.state_dict(), f'{args.log_dir}DFC_{save_name}.pth')
if len(dataloader_list) > 1:
torch.save(critic.state_dict(), f'{args.log_dir}CRITIC_{save_name}.pth')
return dfc