-
Notifications
You must be signed in to change notification settings - Fork 126
/
Copy pathhelpers.py
102 lines (82 loc) · 3.28 KB
/
helpers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import torch
import os
import open3d as o3d
import numpy as np
from diff_gaussian_rasterization import GaussianRasterizationSettings as Camera
def setup_camera(w, h, k, w2c, near=0.01, far=100):
fx, fy, cx, cy = k[0][0], k[1][1], k[0][2], k[1][2]
w2c = torch.tensor(w2c).cuda().float()
cam_center = torch.inverse(w2c)[:3, 3]
w2c = w2c.unsqueeze(0).transpose(1, 2)
opengl_proj = torch.tensor([[2 * fx / w, 0.0, -(w - 2 * cx) / w, 0.0],
[0.0, 2 * fy / h, -(h - 2 * cy) / h, 0.0],
[0.0, 0.0, far / (far - near), -(far * near) / (far - near)],
[0.0, 0.0, 1.0, 0.0]]).cuda().float().unsqueeze(0).transpose(1, 2)
full_proj = w2c.bmm(opengl_proj)
cam = Camera(
image_height=h,
image_width=w,
tanfovx=w / (2 * fx),
tanfovy=h / (2 * fy),
bg=torch.tensor([0, 0, 0], dtype=torch.float32, device="cuda"),
scale_modifier=1.0,
viewmatrix=w2c,
projmatrix=full_proj,
sh_degree=0,
campos=cam_center,
prefiltered=False
)
return cam
def params2rendervar(params):
rendervar = {
'means3D': params['means3D'],
'colors_precomp': params['rgb_colors'],
'rotations': torch.nn.functional.normalize(params['unnorm_rotations']),
'opacities': torch.sigmoid(params['logit_opacities']),
'scales': torch.exp(params['log_scales']),
'means2D': torch.zeros_like(params['means3D'], requires_grad=True, device="cuda") + 0
}
return rendervar
def l1_loss_v1(x, y):
return torch.abs((x - y)).mean()
def l1_loss_v2(x, y):
return (torch.abs(x - y).sum(-1)).mean()
def weighted_l2_loss_v1(x, y, w):
return torch.sqrt(((x - y) ** 2) * w + 1e-20).mean()
def weighted_l2_loss_v2(x, y, w):
return torch.sqrt(((x - y) ** 2).sum(-1) * w + 1e-20).mean()
def quat_mult(q1, q2):
w1, x1, y1, z1 = q1.T
w2, x2, y2, z2 = q2.T
w = w1 * w2 - x1 * x2 - y1 * y2 - z1 * z2
x = w1 * x2 + x1 * w2 + y1 * z2 - z1 * y2
y = w1 * y2 - x1 * z2 + y1 * w2 + z1 * x2
z = w1 * z2 + x1 * y2 - y1 * x2 + z1 * w2
return torch.stack([w, x, y, z]).T
def o3d_knn(pts, num_knn):
indices = []
sq_dists = []
pcd = o3d.geometry.PointCloud()
pcd.points = o3d.utility.Vector3dVector(np.ascontiguousarray(pts, np.float64))
pcd_tree = o3d.geometry.KDTreeFlann(pcd)
for p in pcd.points:
[_, i, d] = pcd_tree.search_knn_vector_3d(p, num_knn + 1)
indices.append(i[1:])
sq_dists.append(d[1:])
return np.array(sq_dists), np.array(indices)
def params2cpu(params, is_initial_timestep):
if is_initial_timestep:
res = {k: v.detach().cpu().contiguous().numpy() for k, v in params.items()}
else:
res = {k: v.detach().cpu().contiguous().numpy() for k, v in params.items() if
k in ['means3D', 'rgb_colors', 'unnorm_rotations']}
return res
def save_params(output_params, seq, exp):
to_save = {}
for k in output_params[0].keys():
if k in output_params[1].keys():
to_save[k] = np.stack([params[k] for params in output_params])
else:
to_save[k] = output_params[0][k]
os.makedirs(f"./output/{exp}/{seq}", exist_ok=True)
np.savez(f"./output/{exp}/{seq}/params", **to_save)