forked from hkchengrex/MMAudio
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo.py
141 lines (116 loc) · 5.35 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import logging
from argparse import ArgumentParser
from pathlib import Path
import torch
import torchaudio
from mmaudio.eval_utils import (ModelConfig, all_model_cfg, generate, load_video, make_video,
setup_eval_logging)
from mmaudio.model.flow_matching import FlowMatching
from mmaudio.model.networks import MMAudio, get_my_mmaudio
from mmaudio.model.utils.features_utils import FeaturesUtils
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
log = logging.getLogger()
@torch.inference_mode()
def main():
setup_eval_logging()
parser = ArgumentParser()
parser.add_argument('--variant',
type=str,
default='large_44k_v2',
help='small_16k, small_44k, medium_44k, large_44k, large_44k_v2')
parser.add_argument('--video', type=Path, help='Path to the video file')
parser.add_argument('--prompt', type=str, help='Input prompt', default='')
parser.add_argument('--negative_prompt', type=str, help='Negative prompt', default='')
parser.add_argument('--duration', type=float, default=8.0)
parser.add_argument('--cfg_strength', type=float, default=4.5)
parser.add_argument('--num_steps', type=int, default=25)
parser.add_argument('--mask_away_clip', action='store_true')
parser.add_argument('--output', type=Path, help='Output directory', default='./output')
parser.add_argument('--seed', type=int, help='Random seed', default=42)
parser.add_argument('--skip_video_composite', action='store_true')
parser.add_argument('--full_precision', action='store_true')
args = parser.parse_args()
if args.variant not in all_model_cfg:
raise ValueError(f'Unknown model variant: {args.variant}')
model: ModelConfig = all_model_cfg[args.variant]
model.download_if_needed()
seq_cfg = model.seq_cfg
if args.video:
video_path: Path = Path(args.video).expanduser()
else:
video_path = None
prompt: str = args.prompt
negative_prompt: str = args.negative_prompt
output_dir: str = args.output.expanduser()
seed: int = args.seed
num_steps: int = args.num_steps
duration: float = args.duration
cfg_strength: float = args.cfg_strength
skip_video_composite: bool = args.skip_video_composite
mask_away_clip: bool = args.mask_away_clip
device = 'cpu'
if torch.cuda.is_available():
device = 'cuda'
elif torch.backends.mps.is_available():
device = 'mps'
else:
log.warning('CUDA/MPS are not available, running on CPU')
dtype = torch.float32 if args.full_precision else torch.bfloat16
output_dir.mkdir(parents=True, exist_ok=True)
# load a pretrained model
net: MMAudio = get_my_mmaudio(model.model_name).to(device, dtype).eval()
net.load_weights(torch.load(model.model_path, map_location=device, weights_only=True))
log.info(f'Loaded weights from {model.model_path}')
# misc setup
rng = torch.Generator(device=device)
rng.manual_seed(seed)
fm = FlowMatching(min_sigma=0, inference_mode='euler', num_steps=num_steps)
feature_utils = FeaturesUtils(tod_vae_ckpt=model.vae_path,
synchformer_ckpt=model.synchformer_ckpt,
enable_conditions=True,
mode=model.mode,
bigvgan_vocoder_ckpt=model.bigvgan_16k_path,
need_vae_encoder=False)
feature_utils = feature_utils.to(device, dtype).eval()
if video_path is not None:
log.info(f'Using video {video_path}')
video_info = load_video(video_path, duration)
clip_frames = video_info.clip_frames
sync_frames = video_info.sync_frames
duration = video_info.duration_sec
if mask_away_clip:
clip_frames = None
else:
clip_frames = clip_frames.unsqueeze(0)
sync_frames = sync_frames.unsqueeze(0)
else:
log.info('No video provided -- text-to-audio mode')
clip_frames = sync_frames = None
seq_cfg.duration = duration
net.update_seq_lengths(seq_cfg.latent_seq_len, seq_cfg.clip_seq_len, seq_cfg.sync_seq_len)
log.info(f'Prompt: {prompt}')
log.info(f'Negative prompt: {negative_prompt}')
audios = generate(clip_frames,
sync_frames, [prompt],
negative_text=[negative_prompt],
feature_utils=feature_utils,
net=net,
fm=fm,
rng=rng,
cfg_strength=cfg_strength)
audio = audios.float().cpu()[0]
if video_path is not None:
save_path = output_dir / f'{video_path.stem}.flac'
else:
safe_filename = prompt.replace(' ', '_').replace('/', '_').replace('.', '')
save_path = output_dir / f'{safe_filename}.flac'
torchaudio.save(save_path, audio, seq_cfg.sampling_rate)
log.info(f'Audio saved to {save_path}')
if video_path is not None and not skip_video_composite:
video_save_path = output_dir / f'{video_path.stem}.mp4'
make_video(video_info, video_save_path, audio, sampling_rate=seq_cfg.sampling_rate)
log.info(f'Video saved to {output_dir / video_save_path}')
log.info('Memory usage: %.2f GB', torch.cuda.max_memory_allocated() / (2**30))
if __name__ == '__main__':
main()