-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathExample.cpp
executable file
·523 lines (425 loc) · 16.1 KB
/
Example.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
/*
Simple example of using OpenCV descriptor-based matching to find a target image
in another image or webcam feed. Supports SIFT, SURF, or ORB algorithms; the
former two require OpenCV to be built with the optional contributions modules, as
they are patent encumbered. ORB is standard with OpenCV, and is free for all use.
Author: John Grime, The University of Oklahoma.
Example compilation:
g++ \
-I/usr/local/include/opencv4 \
-lopencv_core -lopencv_highgui -lopencv_imgproc \
-lopencv_imgcodecs -lopencv_videoio -lopencv_calib3d \
-lopencv_features2d -lopencv_xfeatures2d \
-std=c++11 -Wall -Wextra -pedantic -O2 \
Example.cpp
*/
#include <iostream>
#include <cctype>
#include <algorithm>
#include "opencv2/core.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/features2d.hpp"
#include "opencv2/calib3d.hpp"
#include "Util.hpp"
using std::cout;
using std::endl;
#ifdef HAVE_OPENCV_XFEATURES2D
#include "opencv2/xfeatures2d.hpp"
//
// Two little wrapper structs to keep things neat
//
struct KeypointsAndDescriptors
{
std::vector<cv::KeyPoint> keypoints;
cv::Mat descriptors;
template<typename detector_t>
void DetectAndCompute( const cv::Mat& img, const cv::Ptr<detector_t>& detector )
{
keypoints.clear();
detector->detectAndCompute( img, cv::noArray(), keypoints, descriptors );
}
};
struct KNNMatcher
{
using DMatchVector = std::vector<cv::DMatch>;
std::vector<DMatchVector> all_matches;
DMatchVector good_matches;
template<typename matcher_t>
void Match(
const KeypointsAndDescriptors& kpd1,
const KeypointsAndDescriptors& kpd2,
const cv::Ptr<matcher_t>& matcher,
float Lowe_ratio_thresh = 0.7 )
{
all_matches.clear(); // clear or knnMatch() won't (re)calculate matches
matcher->knnMatch( kpd1.descriptors, kpd2.descriptors, all_matches, 2 );
good_matches.clear(); // clear, as we're appending matches below.
for( const auto& m : all_matches )
{
if (m[0].distance < Lowe_ratio_thresh * m[1].distance)
{
good_matches.push_back(m[0]);
}
}
}
};
void printUsage( const char* progname )
{
cout << endl;
cout << "Usage : " << progname << " find=path [in=path[:scale[:webcamIndex]]] [using=x] [superpose=x] [min=N] [every=N] [gray=yes|no]" << endl;
cout << endl;
cout << "Where:" << endl;
cout << endl;
cout << " find : path to image to detect" << endl;
cout << " in : OPTIONAL path to image in which to search (default: 'webcam', i.e. use webcam feed)" << endl;
cout << " using : OPTIONAL algorithm to use, one of 'SURF', 'SIFT', or 'ORB' (default: SIFT)" << endl;
cout << " superpose : OPTIONAL path to image to superpose onto matched region" << endl;
cout << " min : OPTIONAL minimum N matching features before bounding box drawn (default: 4)" << endl;
cout << " every : OPTIONAL run processing every N frames (default: 1)" << endl;
cout << " gray : OPTIONAL use grayscale images (default: yes)" << endl;
cout << endl;
cout << "Notes:" << endl;
cout << endl;
cout << "The SURF and ORB algorithms can be accompanied with algorithm-specific data;" << endl;
cout << " - for SURF, this is the Hessian tolerance e.g. 'using=SURF:400' (default value: 400')" << endl;
cout << " - for ORB, this is the number of features e.g. 'using=ORB:500' (default value: 500')" << endl;
cout << endl;
cout << "The 'in' parameter can be decorated with a scale value for the data, e.g.: in=webcam:0.5," << endl;
cout << "in=mypic.png:1.5. The default scale value is 1.0 (i.e., no scaling will be performed)." << endl;
cout << "If webcam use is specified, a further webcam index can be provided as a third parameter," << endl;
cout << "e.g. in=webcam:1.0:0 (default: 0)." << endl;
cout << endl;
exit(-1);
}
//
// Off we go ...
//
int main( int argc, char* argv[] )
{
cv::VideoCapture cap;
cv::Mat img_ref, img_super, img, img_tmp, transform;
KeypointsAndDescriptors kpd_ref, kpd;
KNNMatcher knn;
cv::Ptr<cv::Feature2D> detector;
cv::Ptr<cv::DescriptorMatcher> matcher;
std::vector<char> drawMatchesMask;
// Put default values in the parameter map
std::map<std::string,std::vector<std::string>> params {
{ "find", {""} },
{ "in", {"webcam"} },
{ "using", {"SIFT"} },
{ "superpose", {""} },
{ "min", {"4"} },
{ "every", {"1"} },
{ "gray", {"yes"} },
};
// Simple lambda to load an image & convert to grayscale if needed
auto LoadImage = [](cv::Mat& img, const std::string& filepath, bool grayscale = true) {
if ( (img=cv::imread(filepath)).empty() )
{
cout << "Could not load image '" << filepath << "'" << endl;
exit(-1);
}
if (grayscale) cv::cvtColor(img, img, cv::COLOR_BGR2GRAY);
};
bool use_grayscale = true;
int minMatchesForBoundingBox = 0, processEvery = 1;
double resize = 1.0;
//
// Parse command line arguments
//
if (argc<2) printUsage( argv[0] );
Util::ParseArgs( argc, argv, params );
cout << "Parameters:" << endl;
for (const auto& it : params )
{
cout << " " << it.first << " : ";
for (const auto& v : it.second) {cout << v << " ";}
cout << endl;
}
cout << params["gray"][0] << endl;
if (params["gray"][0]!="yes") use_grayscale = false;
if (!Util::ToNumberIfExists(params["min"],0,minMatchesForBoundingBox))
{
cout << "Bad minimum feature matches value '" << params["min"][0] << "'!" << endl;
exit( -1 );
}
if (!Util::ToNumberIfExists(params["every"],0,processEvery))
{
cout << "Bad process every value '" << params["every"][0] << "'!" << endl;
exit( -1 );
}
if (!Util::ToNumberIfExists(params["in"],1,resize))
{
cout << "Bad resize value '" << params["in"][1] << "'!" << endl;
exit( -1 );
}
//
// Load reference image, superpose image. If latter defined, also resize to match
// reference image.
//
LoadImage( img_ref, params["find"][0], use_grayscale );
cout << "Find image dims: " << img_ref.cols << " x " << img_ref.rows << endl;
if (params["superpose"][0]!="")
{
LoadImage( img_super, params["superpose"][0], use_grayscale );
cv::resize( img_super, img_super, cv::Size(img_ref.cols,img_ref.rows) );
cout << "Superpose image dims: " << img_super.cols << " x " << img_super.rows << endl;
}
//
// Create detector and appropriate matcher; SIFT, SURF, or ORB.
//
{
const auto& algo_info = params["using"];
auto algo = algo_info[0];
std::transform( algo.begin(), algo.end(), algo.begin(), [](int x){ return std::tolower(x); } );
if (algo=="sift")
{
detector = cv::xfeatures2d::SIFT::create();
matcher = cv::FlannBasedMatcher::create();
}
else if (algo=="surf")
{
int minHessian = 400;
if (!Util::ToNumberIfExists(algo_info,1,minHessian))
{
cout << "Unable to convert SURF minHessian token '" << algo_info[1] << "' into an integer" << endl;
exit(-1);
}
detector = cv::xfeatures2d::SURF::create( minHessian );
matcher = cv::FlannBasedMatcher::create();
}
else if(algo=="orb")
{
// Default nFeatures is 500, but this tends not to work so well.
// OpenCV docs indicate NORM_HAMMING should be used with ORB.
// If WTA_K is 3 or 4 in ORB constructor (default: 2), use NORM_HAMMING2
int nFeatures = 500;
if (!Util::ToNumberIfExists(algo_info,1,nFeatures))
{
cout << "Unable to convert ORB nFeatures token '" << algo_info[1] << "' into an integer" << endl;
exit(-1);
}
detector = cv::ORB::create( nFeatures );
matcher = cv::BFMatcher::create(cv::NORM_HAMMING);
}
else
{
cout << "Unknown recogniser type " << algo << endl;
exit( -1 );
}
}
//
// Get reference keypoints/descriptors.
//
{
kpd_ref.DetectAndCompute( img_ref, detector );
if (kpd_ref.keypoints.size()<3)
{
cout << "Need at least 3 keypoints from reference image; got " << kpd_ref.keypoints.size() << endl;
exit( -1 );
}
}
//
// Process data, either from input image or looping over webcam frames
//
int fpsCounter = 0, frameNo = 0;
bool useWebcam = (params["in"][0] == "webcam");
if (useWebcam)
{
int webcamIndex = 0;
if (!Util::ToNumberIfExists(params["in"],2,webcamIndex))
{
cout << "Bad webcam index '" << params["in"][2] << "'!" << endl;
exit( -1 );
}
cap.open(webcamIndex);
if (!cap.isOpened())
{
cout << "Unable to open webcam!" << endl;
exit(-1);
}
}
//
// Create an output window
//
cv::namedWindow("Good Matches",1);
//
// Process data, either from input image or looping over webcam frames
//
Util::StatsSet stats;
std::vector<cv::Point2f> srcPoints, dstPoints;
const int detect_idx = stats.AddName( "detect" );
const int knn_idx = stats.AddName( "knn" );
const int homography_idx = stats.AddName( "homography" );
const int draw_idx = stats.AddName( "draw" );
const int resize_idx = stats.AddName( "resize" );
auto start_ticks = cv::getTickCount();
for(;;)
{
bool haveTransform = false;
frameNo++;
fpsCounter++;
if (useWebcam)
{
cap >> img; // get a new frame from webcam
if (use_grayscale) cv::cvtColor(img, img, cv::COLOR_BGR2GRAY);
}
else
{
LoadImage( img, params["in"][0], use_grayscale );
}
if (resize!=1.0)
{
auto t1 = cv::getTickCount();
cv::resize( img, img, cv::Size(), resize, resize );
stats.AddSampleByIndex( resize_idx, cv::getTickCount()-t1 );
}
if ((!useWebcam) || (frameNo%processEvery == 0))
{
auto t1 = cv::getTickCount();
kpd.DetectAndCompute( img, detector );
stats.AddSampleByIndex( detect_idx, cv::getTickCount()-t1 );
//
// We may not have any keypoints if the camera is covered! Need at least
// 4 points (with 3 non-colinear) to get proper homography transform.
//
if (kpd.keypoints.size() > 4)
{
//
// KNN matching
//
t1 = cv::getTickCount();
knn.Match( kpd_ref, kpd, matcher );
stats.AddSampleByIndex( knn_idx, cv::getTickCount()-t1 );
bool sufficientGoodMatches = ((int)knn.good_matches.size()>minMatchesForBoundingBox);
if (sufficientGoodMatches)
{
//
// Find homography and transform for image of interest.
// Replace with something else to avoid camera calib module?
//
t1 = cv::getTickCount();
srcPoints.clear();
dstPoints.clear();
for (const auto& m : knn.good_matches)
{
srcPoints.push_back( kpd_ref.keypoints[m.queryIdx].pt );
dstPoints.push_back( kpd.keypoints[m.trainIdx].pt );
}
// def. reproj. value is 3.0 per OpenCV 4.1.1; smaller = slower?
transform = cv::findHomography( srcPoints, dstPoints, cv::RANSAC );
haveTransform = (!transform.empty());
stats.AddSampleByIndex( homography_idx, cv::getTickCount()-t1 );
}
}
}
//
// Output to screen
//
{
auto t1 = cv::getTickCount();
//
// Annotate output image, if sufficient good matching points found
// and homography transform matrix is valid.
//
float cols1 = img_ref.cols;
float rows1 = img_ref.rows;
float cols2 = img.cols;
float rows2 = img.rows;
if (haveTransform)
{
//
// Transform superposition image; consider smaller output mat, zero
// translation components of transform matrix, then explicit translate
// to save memory / CPU time in add()?
//
if (!img_super.empty())
{
cv::warpPerspective( img_super, img_tmp, transform, cv::Size(img.cols,img.rows) );
cv::add( img, img_tmp, img );
}
//
// Draw bounding box
//
srcPoints = { {0,0}, {0,rows1-1}, {cols1-1,rows1-1}, {cols1-1,0}, {0,0} };
dstPoints.resize( srcPoints.size() );
cv::perspectiveTransform( srcPoints, dstPoints, transform );
for (size_t i=0, max_i=dstPoints.size()-1; i<max_i; i++ )
{
cv::line( img, dstPoints[i], dstPoints[i+1], 255, 2 );
}
//
// Draw mapping of keypoints from reference onto current image
//
cv::drawMatches(
img_ref, kpd_ref.keypoints,
img, kpd.keypoints,
knn.good_matches,
img_tmp,
cv::Scalar::all(-1), cv::Scalar::all(-1),
drawMatchesMask,
cv::DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS );
}
else
{
img_tmp = cv::Mat::zeros(cv::Size(cols1+cols2,std::max(rows1,rows2)), img.type());
img_ref.copyTo( img_tmp(cv::Rect(0,0,cols1,rows1)) );
img.copyTo( img_tmp(cv::Rect(cols1,0,cols2,rows2)) );
}
cv::imshow("Good Matches", img_tmp);
stats.AddSampleByIndex( draw_idx, cv::getTickCount()-t1 );
}
//
// Print some stats if needed.
// "potential fps" is how fast the code could run if only the image
// processing + display time is taken into account (i.e. ignores IO
// bottlenecks like reading from camera etc).
//
auto end_ticks = cv::getTickCount();
auto ticks_per_s = cv::getTickFrequency();
auto elapsed_s = (double)(end_ticks-start_ticks) / ticks_per_s;
if ((!useWebcam) || (elapsed_s>1))
{
double tmp = 0;
printf( "%.1f fps : ", (double)fpsCounter/elapsed_s );
for (const auto& it : stats.key_to_idx)
{
auto mean = stats.stats_vec[it.second].mean;
printf( "%s %.2g ms : ", it.first.c_str(), (mean/ticks_per_s) / 1e-3 );
tmp += mean;
}
printf( "%d good matches in %dx%d frame (potential %.2g fps)\n",
(int)knn.good_matches.size(), img.cols,img.rows, 1.0/(tmp/ticks_per_s) );
if (haveTransform)
{
auto r1 = transform.ptr<double>(0);
auto r2 = transform.ptr<double>(1);
auto r3 = transform.ptr<double>(2);
printf( "| %+8.2f %+8.2f %+8.2f |\n", r1[0], r1[1], r1[2] );
printf( "| %+8.2f %+8.2f %+8.2f |\n", r2[0], r2[1], r2[2] );
printf( "| %+8.2f %+8.2f %+8.2f |\n", r3[0], r3[1], r3[2] );
}
start_ticks = end_ticks;
fpsCounter = 0;
stats.Clear();
}
if (useWebcam)
{
if(cv::waitKey(10) >= 0) break;
}
else
{
cv::waitKey();
break;
}
}
}
#else
int main()
{
cout << "This code requires OpenCV contribution modules to run." << endl;
return 0;
}
#endif