-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmarkov.py
272 lines (195 loc) · 6.65 KB
/
markov.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import sys, io, random, statistics
#
# Generate a discrete distribution from which we can sample.
# Optimisations via e.g. bisection search in Sample(), but
# should be fast enough for our purposes.
#
class DiscrDistr:
def __init__(self):
self.m, self.cdf = {}, None
def Increment(self, key, counts=1):
self.m[key] = self.m.setdefault(key,0)+counts
def PrepareForSampling(self):
total, acc = sum([count for (_,count) in self.m.items()]), 0.0
# sort cdf entries so we hit the largest contributions first.
self.cdf = sorted( self.m.items(), key=lambda x: x[1], reverse=True)
for i,(k,n) in enumerate(self.cdf):
acc += float(n)/total
self.cdf[i] = (k,acc)
def Sample(self,r):
if self.cdf == None:
self.PrepareForSampling()
for k,v in self.cdf:
if v >= r: return k
# If we get here, possible numerical problems? If so, should only
# undersample the LEAST important entity (as cdf sorted descending)
return None
#
# Markov generator for token sequences.
#
class Markov:
def __init__(self):
self.transitions = {}
def AddTransition(self, state, next_token):
self.transitions.setdefault(state,[]).append(next_token)
def CountTransitions(self, state):
return len(self.transitions[state])
def GetNextToken(self, state):
return random.choice(self.transitions[state])
#
# As above, using DiscrDist for reduced memory (but may be slower).
# Don't call GetNextToken() until you've added all your data!
#
class MarkovDD:
def __init__(self):
self.transitions = {}
def AddTransition(self, state, next_token):
self.transitions.setdefault(state,DiscrDistr()).Increment(next_token)
def CountTransitions(self, state):
return len(self.transitions[state].m)
def GetNextToken(self, state):
return self.transitions[state].Sample(random.random())
#
# Print some usage information
#
def print_usage(prog):
print()
print(f'Usage: {prog} input.txt tuple_len [min_sentence]')
print()
print('Where:')
print()
print(' - input.txt : plain text source (assumes utf-8 encoding)')
print(' - tuple_length : number of sequential tokens defining Markov state')
print(' - min_sentence : OPTIONAL min. sentence length to consider (default: key_tuple_length+1)')
print()
sys.exit(-1)
#
# Main code starts here!
#
seq_lens = [] # list of all token sequence lengths from input (unlikely to use excessive memory)
unique_toks = {} # count of all unique token occurrences
starts = {} # all start tuples found in input text sequences
ends = {} # all end tokens found in input text sequences
use_counts = True # use DiscrDistr class in Markov generator?
max_attempts = 100_000 # max. attempts to create a new sentence before stopping
markov = MarkovDD() if use_counts else Markov()
#
# Read command line params, input data
#
args = sys.argv
if len(args)<2:
print_usage(args[0])
path = args[1]
state_tuple_len = int(args[2])
min_sentence_len = state_tuple_len+1
if len(args)>3:
min_sentence_len = max(min_sentence_len, int(args[3]))
with io.open(path, encoding='utf-8') as f:
raw_txt = f.read().lower()
#
# Basic preparation of input text; remove some junk, and ensure
# that certain types of punctuation are treated as separate tokens.
#
split_marker = "|"
replace = {
# "Expand" sentence-ending punctuation to treat as distinct tokens
'.' : ' .'+split_marker,
'!' : ' !'+split_marker,
'?' : ' ?'+split_marker,
# "Expand" other misc. punctuation to treat as distinct tokens
',' : ' , ',
':' : ' : ',
';' : ' ; ',
# Swap these for a space character
'\n' : ' ',
'-' : ' ',
# Remove these entirely
'"' : '',
'\'' : '',
'(' : '',
')' : '',
}
txt = raw_txt
for old in replace:
new = replace[old]
txt = txt.replace(old,new)
#
# Break input text into sentences, tokenise, and generate state transitions
#
for sentence in txt.split(split_marker):
toks = sentence.split()
n_toks = len(toks)
if n_toks < min_sentence_len: continue
for tok in toks:
unique_toks[tok] = unique_toks.setdefault(tok,0)+1
seq_lens.append(n_toks)
for i in range(0, n_toks-(state_tuple_len) ):
j = i+state_tuple_len
state, next_token = tuple(toks[i:j]), toks[j]
if i == 0:
starts[state] = 1
if j == n_toks-1:
ends[next_token] = 1
markov.AddTransition(state, next_token)
# We'll seed the generation using random known-good start states with at least 2 potential transitions.
good_start_states = [ s for s in list(starts.keys()) if markov.CountTransitions(s)>1 ]
#
# Print some information for the user
#
utf8 = lambda x: x.encode('utf-8')
stuff = [(t,unique_toks[t]) for t in unique_toks]
stuff = sorted(stuff, key=lambda x: x[1], reverse=True)
print()
print(f'{len(stuff)} unique tokens.')
#for s in stuff: print( ' %10s {s[1]}' % (utf8(s[0])) )
print('%d viable sentences; min. length %.0f, max. %.0f, mean %.1f, median %.1f, stdev %.1f'%(
len(seq_lens),
min(seq_lens),
max(seq_lens),
statistics.mean(seq_lens),
statistics.median(seq_lens),
statistics.stdev(seq_lens)
))
print(f'{len(markov.transitions)} transitions.')
print(f'{len(starts)} start tuples, {len(good_start_states)} good for seeding.')
print(f'{len(ends)} end tokens.')
print()
#
# Generate some sentences using Markov process
# TODO: examine potential paths through graph, bias towards paths with greatest combinatorial variation?
# Straightforward to implement via modified Dijkstra's algorithm.
#
if len(good_start_states)<1:
print('No start states suitable to seed generation!')
sys.exit(-1)
seed_state = random.choice(good_start_states)
print(f'Seed: "{" ".join(seed_state)}" (max_attempts = {max_attempts}):')
print()
# Attempt to generate multiple unqiue sentences from the same seed.
previous, n_attempts = {}, 0
while (len(previous)<10) and (n_attempts<max_attempts):
n_attempts += 1
state = seed_state
# Sample sequence length appropriate to sentences from input text
L = random.choice(seq_lens)
# Build out sentence
sequence = list(state)
while True:
# No valid transition from this state.
if state not in markov.transitions: break
next_tok = markov.GetNextToken(state)
sequence.append(next_tok)
state = ( *state[1:], next_tok )
# Sentence is "long enough", and terminates with a known end token.
if (len(sequence)>L) and (next_tok in ends): break
# Did we end unexpectedly? Tag output so the user knows.
tag = (len(sequence)<L) or (next_tok not in ends)
# Convert token list to a string, and ensure we're not repeating ourselves
sentence = ' '.join(sequence)
if sentence in previous: continue
else: previous[sentence] = True
# Make output look a little nicer
for x in replace: sentence = sentence.replace(' '+x,x)
sentence = sentence[0].upper() + sentence[1:]
print(f'{len(previous)} {"*" if tag else " "} "{sentence}"')
print()