forked from TUMFTM/global_racetrajectory_optimization
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_globaltraj.py
289 lines (218 loc) · 14.9 KB
/
main_globaltraj.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
import opt_geometrical
import process_functions
import numpy as np
import time
import json
import os
import trajectory_planning_helpers as tph
import matplotlib.pyplot as plt
import configparser
import pkg_resources
"""
Created by:
Alexander Heilmeier
Created on:
31.01.2019
Documentation:
This script has to be executed to generate an optimal trajectory based on a given reference track.
"""
# ----------------------------------------------------------------------------------------------------------------------
# USER INPUT -----------------------------------------------------------------------------------------------------------
# ----------------------------------------------------------------------------------------------------------------------
file_paths = {}
# choose vehicle parameter file
file_paths["veh_params_file"] = "racecar.ini"
# debug and plot options
debug = True # console messages
plot_opts = {"opt_min_curv": False, # plot curvature based on original linearization and solution based
"raceline": True, # plot optimized path
"curv_profile": True, # plot curvature profile
"velprofile": True, # plot velocity profile
"velprofile_3d": False, # plot 3D velocity profile above raceline
"velprofile_3d_stepsize": 1.0, # [m] vertical lines stepsize in 3D velocity profile plot
"spline_normals": False, # plot spline normals
"mintime": False} # plot states, controls, tire forces if opt_mintime = True
# select track file (including centerline coords + track widths)
file_paths["track_file"] = "Berlin_2018.csv"
# file_paths["track_file"] = "HandlingTrack.csv"
# file_paths["track_file"] = "roundedRectangle.csv"
# set import options
# Berlin: set_new_start 106.0, 141.0
imp_opts = {"flip_imp_track": False, # flip imported track to reverse direction
"set_new_start": True, # set new starting point (changes order, not coordinates)
"new_start": np.array([106.0, 141.0])} # [x_m, y_m]
# check normal vector crossings (can take a while)
check_normal_crossings = False
# optimization use switches (minimum curvature/shortest path)
use_opt_mincurv = False # minimum curvature optimization (without IQP)
use_opt_mincurv_iqp = True # minimum curvature optimization (with IQP)
use_opt_shortest_path = False # shortest path optimization
# ----------------------------------------------------------------------------------------------------------------------
# CHECK PYTHON DEPENDENCIES --------------------------------------------------------------------------------------------
# ----------------------------------------------------------------------------------------------------------------------
# get current path
file_paths["module"] = os.path.dirname(os.path.abspath(__file__))
# read dependencies from requirements.txt
requirements_path = os.path.join(file_paths["module"], 'requirements.txt')
dependencies = []
with open(requirements_path, 'r') as fh:
line = fh.readline()
while line:
dependencies.append(line.rstrip())
line = fh.readline()
# check dependencies
pkg_resources.require(dependencies)
# ----------------------------------------------------------------------------------------------------------------------
# INITIALIZATION STUFF -------------------------------------------------------------------------------------------------
# ----------------------------------------------------------------------------------------------------------------------
# set together track import path
file_paths["track"] = file_paths["module"] + "/inputs/tracks/" + file_paths["track_file"]
# set export paths
file_paths["racetraj_export"] = file_paths["module"] + "/outputs/racetraj_cl.csv"
# ----------------------------------------------------------------------------------------------------------------------
# IMPORT VEHICLE DEPENDENT PARAMETERS ----------------------------------------------------------------------------------
# ----------------------------------------------------------------------------------------------------------------------
# load vehicle parameter file into a "pars" dict
parser = configparser.ConfigParser()
pars = {}
if not parser.read(file_paths["module"] + "/params/" + file_paths["veh_params_file"]):
raise ValueError('Specified config file does not exist or is empty!')
pars["ggv"] = json.loads(parser.get('GGV', 'ggv'))
pars["stepsizes"] = json.loads(parser.get('OPTIMIZATION_OPTIONS', 'stepsizes'))
pars["reg_smooth_opts"] = json.loads(parser.get('OPTIMIZATION_OPTIONS', 'reg_smooth_opts'))
pars["optim_opts"] = json.loads(parser.get('OPTIMIZATION_OPTIONS', 'optim_opts'))
pars["veh_dims"] = json.loads(parser.get('OPTIMIZATION_OPTIONS', 'veh_dims'))
# set import path for ggv diagram
file_paths["ggv"] = file_paths["module"] + "/inputs/ggv/" + pars["ggv"]
# ----------------------------------------------------------------------------------------------------------------------
# IMPORT TRACK AND GGV DIAGRAMM ----------------------------------------------------------------------------------------
# ----------------------------------------------------------------------------------------------------------------------
# save start time
t_start = time.perf_counter()
reftrack_imp, ggv = process_functions.src.imp_track_ggv.imp_track_ggv(imp_opts=imp_opts,
file_paths=file_paths,
veh_dims=pars["veh_dims"])
# ----------------------------------------------------------------------------------------------------------------------
# PREPARE REFTRACK -----------------------------------------------------------------------------------------------------
# ----------------------------------------------------------------------------------------------------------------------
reftrack_interp, normvec_normalized_interp, a_interp, coeffs_x_interp, coeffs_y_interp = \
process_functions.src.prep_track.prep_track(reftrack_imp=reftrack_imp,
pars=pars,
debug=debug,
check_normal_crossings=check_normal_crossings)
# ----------------------------------------------------------------------------------------------------------------------
# CALL OPTIMIZATION ----------------------------------------------------------------------------------------------------
# ----------------------------------------------------------------------------------------------------------------------
if use_opt_mincurv:
alpha_opt = opt_geometrical.src.opt_min_curv.opt_min_curv(reftrack=reftrack_interp,
normvectors=normvec_normalized_interp,
A=a_interp,
kappa_bound=pars["optim_opts"]["kappa_bound"],
w_veh=pars["optim_opts"]["w_veh"],
print_debug=debug,
plot_debug=plot_opts["opt_min_curv"])[0]
elif use_opt_mincurv_iqp:
alpha_opt, reftrack_interp, normvec_normalized_interp = process_functions.src.iqp_handler.\
iqp_handler(reftrack=reftrack_interp,
normvectors=normvec_normalized_interp,
A=a_interp,
kappa_bound=pars["optim_opts"]["kappa_bound"],
w_veh=pars["optim_opts"]["w_veh"],
print_debug=debug,
plot_debug=plot_opts["opt_min_curv"],
stepsize_reg=pars["stepsizes"]["stepsize_reg"],
iters_min=pars["optim_opts"]["iqp_iters_min"],
curv_error_allowed=pars["optim_opts"]["iqp_curv_error_allowed"])
elif use_opt_shortest_path:
alpha_opt = opt_geometrical.src.opt_shortest_path.opt_shortest_path(reftrack=reftrack_interp,
normvectors=normvec_normalized_interp,
w_veh=pars["optim_opts"]["w_veh"],
print_debug=debug)
else:
alpha_opt = np.zeros(reftrack_interp.shape[0])
# ----------------------------------------------------------------------------------------------------------------------
# INTERPOLATE SPLINES TO SMALL DISTANCES BETWEEN RACELINE POINTS -------------------------------------------------------
# ----------------------------------------------------------------------------------------------------------------------
raceline_interp, a_opt, coeffs_x_opt, coeffs_y_opt, spline_inds_opt_interp, t_vals_opt_interp, s_points_opt_interp,\
spline_lengths_opt, el_lengths_opt_interp = process_functions.src.interp_raceline.\
interp_raceline(stepsize_interp_after_opt=pars["stepsizes"]["stepsize_interp_after_opt"],
refline_interp=reftrack_interp[:, :2],
alpha_opt=alpha_opt,
normvec_normalized_interp=normvec_normalized_interp)
# ----------------------------------------------------------------------------------------------------------------------
# CALCULATE HEADING AND CURVATURE --------------------------------------------------------------------------------------
# ----------------------------------------------------------------------------------------------------------------------
# calculate heading and curvature (analytically)
psi_vel_opt, kappa_opt = tph.calc_head_curv_an.\
calc_head_curv_an(coeffs_x=coeffs_x_opt,
coeffs_y=coeffs_y_opt,
ind_spls=spline_inds_opt_interp,
t_spls=t_vals_opt_interp)
# ----------------------------------------------------------------------------------------------------------------------
# CALCULATE VELOCITY PROFILE -------------------------------------------------------------------------------------------
# ----------------------------------------------------------------------------------------------------------------------
vx_profile_opt = tph.calc_vel_profile.calc_vel_profile(ggv=ggv,
kappa=kappa_opt,
el_lengths=el_lengths_opt_interp,
dyn_model_exp=pars["optim_opts"]["dyn_model_exp"],
filt_window=pars["optim_opts"]["window_size_conv_filt"],
closed=True)
# calculate longitudinal acceleration profile
vx_profile_opt_cl = np.append(vx_profile_opt, vx_profile_opt[0])
ax_profile_opt = tph.calc_ax_profile.calc_ax_profile(vx_profile=vx_profile_opt_cl,
el_lengths=el_lengths_opt_interp,
eq_length_output=False)
# calculate laptime
t_profile_cl = tph.calc_t_profile.calc_t_profile(vx_profile=vx_profile_opt,
ax_profile=ax_profile_opt,
el_lengths=el_lengths_opt_interp)
print("Laptime: %.2f s" % t_profile_cl[-1])
if plot_opts["velprofile"]:
s_points = np.cumsum(el_lengths_opt_interp[:-1])
s_points = np.insert(s_points, 0, 0.0)
plt.plot(s_points, vx_profile_opt)
plt.plot(s_points, ax_profile_opt)
plt.plot(s_points, t_profile_cl[:-1])
plt.grid()
plt.xlabel("distance in m")
plt.legend(["vx in mps", "ax in mps2", "t in s"])
plt.show()
# ----------------------------------------------------------------------------------------------------------------------
# DATA POSTPROCESSING --------------------------------------------------------------------------------------------------
# ----------------------------------------------------------------------------------------------------------------------
# arrange data into one trajectory
trajectory_opt = np.column_stack((s_points_opt_interp, raceline_interp, psi_vel_opt, kappa_opt, vx_profile_opt,
ax_profile_opt))
spline_data_opt = np.column_stack((spline_lengths_opt, coeffs_x_opt, coeffs_y_opt))
# create a closed race trajectory array
trajectory_opt_cl = np.vstack((trajectory_opt, trajectory_opt[0, :]))
trajectory_opt_cl[-1, 0] = np.sum(spline_data_opt[:, 0]) # set correct length
# print end time
print("Runtime from referenceline import to trajectory export was %.2f s" % (time.perf_counter() - t_start))
# ----------------------------------------------------------------------------------------------------------------------
# CHECK TRAJECTORY -----------------------------------------------------------------------------------------------------
# ----------------------------------------------------------------------------------------------------------------------
bound1, bound2 = process_functions.src.check_traj.\
check_traj(reftrack=reftrack_interp,
reftrack_normvec_normalized=normvec_normalized_interp,
veh_dims=pars["veh_dims"],
debug=debug,
trajectory_opt=trajectory_opt,
ggv=ggv)
# ----------------------------------------------------------------------------------------------------------------------
# EXPORT ---------------------------------------------------------------------------------------------------------------
# ----------------------------------------------------------------------------------------------------------------------
# export data to CSV
process_functions.src.export_traj.export_traj(file_paths=file_paths,
traj_race=trajectory_opt_cl)
print("\nFinished creation of trajectory:", time.strftime("%H:%M:%S"), "\n")
# ----------------------------------------------------------------------------------------------------------------------
# PLOT RESULTS ---------------------------------------------------------------------------------------------------------
# ----------------------------------------------------------------------------------------------------------------------
process_functions.src.plot_funcs.plot_funcs(plot_opts=plot_opts,
optim_opts=pars["optim_opts"],
veh_dims=pars["veh_dims"],
refline_interp=reftrack_interp[:, :2],
bound1=bound1,
bound2=bound2,
trajectory_opt=trajectory_opt)