-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsurvey_analysis_functions.py
244 lines (220 loc) · 8.98 KB
/
survey_analysis_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
#DISCLAIMER: This code is not to be resold or used for commercial purposes and the user of this code assumes all liability for the consequences of its use
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from scipy.stats import gaussian_kde
import time
def ncr(n, r):
from math import factorial as f
ans = f(n)/(f(r)*f(n-r))
return ans
def binomial_expand(a, n):
coeffs = []
for k in range(n+1):
coeffs.append(ncr(n, k)*np.power(y, n-k))
return coeffs
def quantile_identify(in_series, n_quantiles = 4, plot_dist = False, plot_title = '', x_axis_label = '', y_axis_label = ''):
'''Returns series identifying the quantile each corresponding element in the input series is in
Plotting a density plot of the series with the quantiles indicated is optional'''
#Setting the number of quantiles to more than 1000 results in bad things down the road, so check for it now
if n_quantiles > 1000:
while n_quantiles > 1000:
n_quantiles = input("There's a chance that setting the number of quantiles to be greater than 1,000 could cause the universe to explode, so let's not risk it. How many quantiles do you want?\n")
#Check if scipy installed (for plotting)
if plot_dist:
try:
from scipy.stats import gaussian_kde
import matplotlib.pyplot as plt
except ImportError:
warnings.warn("Scipy and/or Matplotlib aren't installed, so plotting the distribution with quantiles just isn't going to happen.")
plot_dist = False
plot_title = ''
x_axis_label = ''
y_axis_label = ''
#Locate quantiles
p = []
for i in range(1, n_quantiles):
p.append(float(i)/n_quantiles)
qs = in_series.describe(percentiles = p)
qsi = qs.index.tolist()
#print qsi
q = {}
q[0] = 0
for i in range(1, n_quantiles):
index_percent = round(100*float(i)/n_quantiles, 1)
if str(int(index_percent)) + '%' in qsi:
#print ('Yes 1')
ind = str(int(index_percent)) + '%'
else:
#print ('No 1')
if str(index_percent) + '%' in qsi:
#print ('Yes 2')
ind = str(index_percent) + '%'
else:
#print ('No 2')
ind = str(index_percent - 0.1) + '%'
#print index
q[i] = qs[ind]
q[n_quantiles] = in_series.max() + 1
#Plot distribution with quantiles
if plot_dist:
support = np.linspace(0, in_series.max(), 1000)
d = gaussian_kde(in_series.dropna())
plt.plot(support, d(support))
for i in range(1, n_quantiles):
plt.plot([q[i], q[i]], [0, d(q[i])], color = '#000000', linestyle = '--')
if plot_title:
plt.title(plot_title)
if x_axis_label:
plt.xlabel(x_axis_label)
if y_axis_label:
plt.ylabel(y_axis_label)
plt.show()
#Categorize series values based on quantiles
def categorize(number):
if np.isnan(number):
quantile = number
return quantile
for i in range(n_quantiles):
if number >= q[i] and number < q[i + 1]:
quantile = i + 1
return quantile
#Categorize values
out_series = in_series.apply(categorize)
return out_series
def egoa(in_series, group_size, uneven_last = True, plot_dist = False, plot_title = False, x_axis_label = '', y_axis_label = ''):
'''Even group ordinal aggregation. Similar to quantile identify, but all groups (except the first or last) are guaranteed to have the same size'''
in_series = in_series.sort(inplace = False) #Sort series
if plot_dist:
try:
from scipy.stats import gaussian_kde
import matplotlib.pyplot as plt
except ImportError:
warnings.warn("Scipy and/or Matplotlib aren't installed, so plotting the distribution with divisions just isn't going to happen.")
plot_dist = False
plot_title = ''
x_axis_label = ''
y_axis_label = ''
support = np.linspace(0, in_series.max(), 1000)
d = gaussian_kde(in_series)
plt.plot(support, d(support), color = '#000000')
n_groups = int(np.ceil(float(len(in_series))/group_size)) #Compute the number of groups based on inputs
out_series = pd.Series(index = in_series.index)
#Check if the last group is to be the group smaller than the others
if uneven_last:
for i in range(1, n_groups):
#Define all of the elements in each group, and set their corresponting outputs to be the group number
current_set = in_series.iloc[(i-1)*group_size:i*group_size]
for item in current_set.index:
out_series.loc[item] = i
if plot_dist:
x = in_series.iloc[i*group_size]
plt.plot([x, x], [0, d(x)], linestyle = '--', color = '#000000')
#Now do this for the final group
final_set = in_series.iloc[(n_groups-1)*group_size:]
for item in final_set.index:
out_series.loc[item] = n_groups
else:
n = len(in_series)
for i in range(1, n_groups):
#Define all of the elements in each group, and set their corresponting outputs to be the group number
current_set = in_series.iloc[n-i*group_size:n-(i-1)*group_size]
for item in current_set.index:
out_series.loc[item] = n_groups - i + 1
if plot_dist:
x = in_series.iloc[n-i*group_size]
plt.plot([x, x], [0, d(x)], linestyle = '--', color = '#000000')
#Now do this for the first group
initial_set = in_series.iloc[:n-(n_groups-1)*group_size]
for item in initial_set.index:
out_series.loc[item] = 1
if plot_title:
plt.title(plot_title)
if x_axis_label:
plt.xlabel(x_axis_label)
if y_axis_label:
plt.ylabel(y_axis_label)
if plot_dist:
plt.show()
return out_series
def plot_2d_kde(df, columns, range = None, aggregation = 1, resolution = (800, 600), colormap = plt.cm.hot, title = '', axis_labels = ('', ''), outfilepath = ''):
'''Plots 2-dimensional Gaussian kernal density estimation plot for specified data'''
timerstart = time.time()
df = df[columns].dropna()
if aggregation > 1:
df['Q'] = egoa(df[columns[0]], aggregation)
n_groups = df['Q'].max()
df = df.query('Q < @n_groups')
df = df.groupby('Q').mean()
#Check if maximum value of x specified. If not, just have it as the maximum value of the x column
if range:
hist_data = df
#Define x_min
if range[0] == 'min':
x_min = x.min()
elif range[0] or range[0] == 0:
x_min = range[0]
hist_data = hist_data.query(columns[0] + ' >= @x_min')
else:
x_min = x.min()
#Define x_max
if range[1] == 'max':
x_max = x.max()
elif range[1] or range[1] == 0:
x_max = range[1]
hist_data = hist_data.query(columns[0] + ' <= @x_max')
else:
x_max = x.max()
#Define y_min
if range[2] == 'min':
y_min = y.min()
elif range[2] or range[2] == 0:
y_min = range[2]
hist_data = hist_data.query(columns[1] + ' >= @y_min')
else:
y_min = y.min()
#Define y_max
if range[3] == 'max':
y_max = y.max()
elif range[3] or range[3] == 0:
y_max = range[3]
hist_data = hist_data.query(columns[1] + ' <= @y_max')
else:
y_max = y.max()
x = np.array(hist_data[columns[0]])
y = np.array(hist_data[columns[1]])
else:
x = np.array(df[columns[0]])
y = np.array(df[columns[1]])
x_min = x.min()
x_max = x.max()
y_min = y.min()
y_max = y.max()
print ('Defining kernel')
X, Y = np.mgrid[x_min:x_max:resolution[0]*1j, y_min:y_max:resolution[1]*1j] #Define meshgrid
positions = np.vstack([X.ravel(), Y.ravel()])
values = np.vstack([x, y])
kernel = gaussian_kde(values)
Z = np.reshape(kernel(positions), X.shape) #Reshape array in order to be plotted
print('Plotting kernel')
plt.imshow(np.rot90(Z), cmap = colormap, extent = [x_min, x_max, y_min, y_max], aspect = 'auto')
plt.xlim(x_min, x_max)
plt.ylim(y_min, y_max)
plt.title(title)
plt.xlabel(axis_labels[0])
plt.ylabel(axis_labels[1])
print(time.time() - timerstart)
if outfilepath:
plt.savefig(outfilepath)
plt.cla()
else:
plt.show()
def series_standardize(in_series):
'''Standardizes values in a series'''
out_series = (in_series - in_series.mean())/in_series.std()
return out_series
def series_log_standardize(in_series):
'''Standardizes the natural logarithm of values in a series'''
in_series = np.log(in_series)
out_series = (in_series - in_series.mean())/in_series.std()
return out_series