-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstock_prediction.py
79 lines (58 loc) · 1.91 KB
/
stock_prediction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import streamlit as st
from datetime import date
import yfinance as yf
from prophet import Prophet
from prophet.plot import plot_plotly
from plotly import graph_objs as go
# start of data
START = "2015-01-01"
TODAY = date.today().strftime("%Y-%m-%d")
# title of streamlit app
st.title("Stock Prediction App")
stocks = ("AAPL", "GME", "TSLA", "SHOP")
# create select box for selected stocks
selected_stocks = st.selectbox("Select dataset for prediction", stocks)
# slider to get years
n_years = st.slider("Years of prediction:", 1, 4)
period = n_years * 365
# function to load stock data
@st.cache # keeps laoded data in memory
def load_data(ticker):
data = yf.download(ticker, START, TODAY)
data.reset_index(inplace=True) # puts date in the first column
return data
# load data in stream lit and let user know when data is being loaded and done loading
data_load_state = st.text("Load data ...")
data = load_data(selected_stocks)
data_load_state.text("Loading data... done!")
# Show preview of data
st.subheader("Raw data")
st.write(data.tail())
# function to plot data
def plot_raw_data():
fig = go.Figure()
fig.add_trace(go.Scatter(x=data['Date'],
y=data["Open"], name="stock_open"))
fig.add_trace(go.Scatter(x=data['Date'],
y=data["Close"], name="stock_close"))
fig.layout.update(title_text="Time Series Data",
xaxis_rangeslider_visible=True)
st.plotly_chart(fig)
plot_raw_data()
# forecasting
df_train = data[["Date", "Close"]]
df_train = df_train.rename(columns={"Date": "ds", "Close": "y"})
# model
m = Prophet()
m.fit(df_train)
future = m.make_future_dataframe(periods=period)
forecast = m.predict(future)
st.subheader("Forecast data")
st.write(forecast.tail())
# plot forecast
st.write("forecast data")
fig1 = plot_plotly(m, forecast)
st.plotly_chart(fig1)
st.write('forecast components')
fig2 = m.plot_components(forecast)
st.write(fig2)