forked from XDZhelheim/Torch-MTS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPatchTST.py
645 lines (537 loc) · 29.2 KB
/
PatchTST.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
import torch
import torch.nn as nn
import math
from torch import Tensor
import torch.nn.functional as F
import numpy as np
from typing import Callable, Optional
class RevIN(nn.Module):
def __init__(self, num_features: int, eps=1e-5, affine=True, subtract_last=False):
"""
:param num_features: the number of features or channels
:param eps: a value added for numerical stability
:param affine: if True, RevIN has learnable affine parameters
"""
super(RevIN, self).__init__()
self.num_features = num_features
self.eps = eps
self.affine = affine
self.subtract_last = subtract_last
if self.affine:
self._init_params()
def forward(self, x, mode:str):
if mode == 'norm':
self._get_statistics(x)
x = self._normalize(x)
elif mode == 'denorm':
x = self._denormalize(x)
else: raise NotImplementedError
return x
def _init_params(self):
# initialize RevIN params: (C,)
self.affine_weight = nn.Parameter(torch.ones(self.num_features))
self.affine_bias = nn.Parameter(torch.zeros(self.num_features))
def _get_statistics(self, x):
dim2reduce = tuple(range(1, x.ndim-1))
if self.subtract_last:
self.last = x[:,-1,:].unsqueeze(1)
else:
self.mean = torch.mean(x, dim=dim2reduce, keepdim=True).detach()
self.stdev = torch.sqrt(torch.var(x, dim=dim2reduce, keepdim=True, unbiased=False) + self.eps).detach()
def _normalize(self, x):
if self.subtract_last:
x = x - self.last
else:
x = x - self.mean
x = x / self.stdev
if self.affine:
x = x * self.affine_weight
x = x + self.affine_bias
return x
def _denormalize(self, x):
if self.affine:
x = x - self.affine_bias
x = x / (self.affine_weight + self.eps*self.eps)
x = x * self.stdev
if self.subtract_last:
x = x + self.last
else:
x = x + self.mean
return x
class Transpose(nn.Module):
def __init__(self, *dims, contiguous=False):
super().__init__()
self.dims, self.contiguous = dims, contiguous
def forward(self, x):
if self.contiguous: return x.transpose(*self.dims).contiguous()
else: return x.transpose(*self.dims)
def get_activation_fn(activation):
if callable(activation): return activation()
elif activation.lower() == "relu": return nn.ReLU()
elif activation.lower() == "gelu": return nn.GELU()
raise ValueError(f'{activation} is not available. You can use "relu", "gelu", or a callable')
# decomposition
class moving_avg(nn.Module):
"""
Moving average block to highlight the trend of time series
"""
def __init__(self, kernel_size, stride):
super(moving_avg, self).__init__()
self.kernel_size = kernel_size
self.avg = nn.AvgPool1d(kernel_size=kernel_size, stride=stride, padding=0)
def forward(self, x):
# padding on the both ends of time series
front = x[:, 0:1, :].repeat(1, (self.kernel_size - 1) // 2, 1)
end = x[:, -1:, :].repeat(1, (self.kernel_size - 1) // 2, 1)
x = torch.cat([front, x, end], dim=1)
x = self.avg(x.permute(0, 2, 1))
x = x.permute(0, 2, 1)
return x
class series_decomp(nn.Module):
"""
Series decomposition block
"""
def __init__(self, kernel_size):
super(series_decomp, self).__init__()
self.moving_avg = moving_avg(kernel_size, stride=1)
def forward(self, x):
moving_mean = self.moving_avg(x)
res = x - moving_mean
return res, moving_mean
# pos_encoding
def PositionalEncoding(q_len, d_model, normalize=True):
pe = torch.zeros(q_len, d_model)
position = torch.arange(0, q_len).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2) * -(math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
if normalize:
pe = pe - pe.mean()
pe = pe / (pe.std() * 10)
return pe
SinCosPosEncoding = PositionalEncoding
def Coord2dPosEncoding(q_len, d_model, exponential=False, normalize=True, eps=1e-3, verbose=False):
x = .5 if exponential else 1
i = 0
for i in range(100):
cpe = 2 * (torch.linspace(0, 1, q_len).reshape(-1, 1) ** x) * (torch.linspace(0, 1, d_model).reshape(1, -1) ** x) - 1
# pv(f'{i:4.0f} {x:5.3f} {cpe.mean():+6.3f}', verbose) # WTF is this pv???
print(f'{i:4.0f} {x:5.3f} {cpe.mean():+6.3f}', verbose) # maybe this?
if abs(cpe.mean()) <= eps: break
elif cpe.mean() > eps: x += .001
else: x -= .001
i += 1
if normalize:
cpe = cpe - cpe.mean()
cpe = cpe / (cpe.std() * 10)
return cpe
def Coord1dPosEncoding(q_len, exponential=False, normalize=True):
cpe = (2 * (torch.linspace(0, 1, q_len).reshape(-1, 1)**(.5 if exponential else 1)) - 1)
if normalize:
cpe = cpe - cpe.mean()
cpe = cpe / (cpe.std() * 10)
return cpe
def positional_encoding(pe, learn_pe, q_len, d_model):
# Positional encoding
if pe == None:
W_pos = torch.empty((q_len, d_model)) # pe = None and learn_pe = False can be used to measure impact of pe
nn.init.uniform_(W_pos, -0.02, 0.02)
learn_pe = False
elif pe == 'zero':
W_pos = torch.empty((q_len, 1))
nn.init.uniform_(W_pos, -0.02, 0.02)
elif pe == 'zeros':
W_pos = torch.empty((q_len, d_model))
nn.init.uniform_(W_pos, -0.02, 0.02)
elif pe == 'normal' or pe == 'gauss':
W_pos = torch.zeros((q_len, 1))
torch.nn.init.normal_(W_pos, mean=0.0, std=0.1)
elif pe == 'uniform':
W_pos = torch.zeros((q_len, 1))
nn.init.uniform_(W_pos, a=0.0, b=0.1)
elif pe == 'lin1d': W_pos = Coord1dPosEncoding(q_len, exponential=False, normalize=True)
elif pe == 'exp1d': W_pos = Coord1dPosEncoding(q_len, exponential=True, normalize=True)
elif pe == 'lin2d': W_pos = Coord2dPosEncoding(q_len, d_model, exponential=False, normalize=True)
elif pe == 'exp2d': W_pos = Coord2dPosEncoding(q_len, d_model, exponential=True, normalize=True)
elif pe == 'sincos': W_pos = PositionalEncoding(q_len, d_model, normalize=True)
else: raise ValueError(f"{pe} is not a valid pe (positional encoder. Available types: 'gauss'=='normal', \
'zeros', 'zero', uniform', 'lin1d', 'exp1d', 'lin2d', 'exp2d', 'sincos', None.)")
return nn.Parameter(W_pos, requires_grad=learn_pe)
# Cell
class PatchTST_backbone(nn.Module):
def __init__(self, c_in:int, context_window:int, target_window:int, patch_len:int, stride:int, max_seq_len:Optional[int]=1024,
n_layers:int=3, d_model=128, n_heads=16, d_k:Optional[int]=None, d_v:Optional[int]=None,
d_ff:int=256, norm:str='BatchNorm', attn_dropout:float=0., dropout:float=0., act:str="gelu", key_padding_mask:bool='auto',
padding_var:Optional[int]=None, attn_mask:Optional[Tensor]=None, res_attention:bool=True, pre_norm:bool=False, store_attn:bool=False,
pe:str='zeros', learn_pe:bool=True, fc_dropout:float=0., head_dropout = 0, padding_patch = None,
pretrain_head:bool=False, head_type = 'flatten', individual = False, revin = True, affine = True, subtract_last = False,
verbose:bool=False, **kwargs):
super().__init__()
# RevIn
self.revin = revin
if self.revin: self.revin_layer = RevIN(c_in, affine=affine, subtract_last=subtract_last)
# Patching
self.patch_len = patch_len
self.stride = stride
self.padding_patch = padding_patch
patch_num = int((context_window - patch_len)/stride + 1)
if padding_patch == 'end': # can be modified to general case
self.padding_patch_layer = nn.ReplicationPad1d((0, stride))
patch_num += 1
# Backbone
self.backbone = TSTiEncoder(c_in, patch_num=patch_num, patch_len=patch_len, max_seq_len=max_seq_len,
n_layers=n_layers, d_model=d_model, n_heads=n_heads, d_k=d_k, d_v=d_v, d_ff=d_ff,
attn_dropout=attn_dropout, dropout=dropout, act=act, key_padding_mask=key_padding_mask, padding_var=padding_var,
attn_mask=attn_mask, res_attention=res_attention, pre_norm=pre_norm, store_attn=store_attn,
pe=pe, learn_pe=learn_pe, verbose=verbose, **kwargs)
# Head
self.head_nf = d_model * patch_num
self.n_vars = c_in
self.pretrain_head = pretrain_head
self.head_type = head_type
self.individual = individual
if self.pretrain_head:
self.head = self.create_pretrain_head(self.head_nf, c_in, fc_dropout) # custom head passed as a partial func with all its kwargs
elif head_type == 'flatten':
self.head = Flatten_Head(self.individual, self.n_vars, self.head_nf, target_window, head_dropout=head_dropout)
def forward(self, z): # z: [bs x nvars x seq_len]
# norm
if self.revin:
z = z.permute(0,2,1)
z = self.revin_layer(z, 'norm')
z = z.permute(0,2,1)
# do patching
if self.padding_patch == 'end':
z = self.padding_patch_layer(z)
z = z.unfold(dimension=-1, size=self.patch_len, step=self.stride) # z: [bs x nvars x patch_num x patch_len]
z = z.permute(0,1,3,2) # z: [bs x nvars x patch_len x patch_num]
# model
z = self.backbone(z) # z: [bs x nvars x d_model x patch_num]
z = self.head(z) # z: [bs x nvars x target_window]
# denorm
if self.revin:
z = z.permute(0,2,1)
z = self.revin_layer(z, 'denorm')
z = z.permute(0,2,1)
return z
def create_pretrain_head(self, head_nf, vars, dropout):
return nn.Sequential(nn.Dropout(dropout),
nn.Conv1d(head_nf, vars, 1)
)
class Flatten_Head(nn.Module):
def __init__(self, individual, n_vars, nf, target_window, head_dropout=0):
super().__init__()
self.individual = individual
self.n_vars = n_vars
if self.individual:
self.linears = nn.ModuleList()
self.dropouts = nn.ModuleList()
self.flattens = nn.ModuleList()
for i in range(self.n_vars):
self.flattens.append(nn.Flatten(start_dim=-2))
self.linears.append(nn.Linear(nf, target_window))
self.dropouts.append(nn.Dropout(head_dropout))
else:
self.flatten = nn.Flatten(start_dim=-2)
self.linear = nn.Linear(nf, target_window)
self.dropout = nn.Dropout(head_dropout)
def forward(self, x): # x: [bs x nvars x d_model x patch_num]
if self.individual:
x_out = []
for i in range(self.n_vars):
z = self.flattens[i](x[:,i,:,:]) # z: [bs x d_model * patch_num]
z = self.linears[i](z) # z: [bs x target_window]
z = self.dropouts[i](z)
x_out.append(z)
x = torch.stack(x_out, dim=1) # x: [bs x nvars x target_window]
else:
x = self.flatten(x)
x = self.linear(x)
x = self.dropout(x)
return x
class TSTiEncoder(nn.Module): #i means channel-independent
def __init__(self, c_in, patch_num, patch_len, max_seq_len=1024,
n_layers=3, d_model=128, n_heads=16, d_k=None, d_v=None,
d_ff=256, norm='BatchNorm', attn_dropout=0., dropout=0., act="gelu", store_attn=False,
key_padding_mask='auto', padding_var=None, attn_mask=None, res_attention=True, pre_norm=False,
pe='zeros', learn_pe=True, verbose=False, **kwargs):
super().__init__()
self.patch_num = patch_num
self.patch_len = patch_len
# Input encoding
q_len = patch_num
self.W_P = nn.Linear(patch_len, d_model) # Eq 1: projection of feature vectors onto a d-dim vector space
self.seq_len = q_len
# Positional encoding
self.W_pos = positional_encoding(pe, learn_pe, q_len, d_model)
# Residual dropout
self.dropout = nn.Dropout(dropout)
# Encoder
self.encoder = TSTEncoder(q_len, d_model, n_heads, d_k=d_k, d_v=d_v, d_ff=d_ff, norm=norm, attn_dropout=attn_dropout, dropout=dropout,
pre_norm=pre_norm, activation=act, res_attention=res_attention, n_layers=n_layers, store_attn=store_attn)
def forward(self, x) -> Tensor: # x: [bs x nvars x patch_len x patch_num]
n_vars = x.shape[1]
# Input encoding
x = x.permute(0,1,3,2) # x: [bs x nvars x patch_num x patch_len]
x = self.W_P(x) # x: [bs x nvars x patch_num x d_model]
u = torch.reshape(x, (x.shape[0]*x.shape[1],x.shape[2],x.shape[3])) # u: [bs * nvars x patch_num x d_model]
u = self.dropout(u + self.W_pos) # u: [bs * nvars x patch_num x d_model]
# Encoder
z = self.encoder(u) # z: [bs * nvars x patch_num x d_model]
z = torch.reshape(z, (-1,n_vars,z.shape[-2],z.shape[-1])) # z: [bs x nvars x patch_num x d_model]
z = z.permute(0,1,3,2) # z: [bs x nvars x d_model x patch_num]
return z
# Cell
class TSTEncoder(nn.Module):
def __init__(self, q_len, d_model, n_heads, d_k=None, d_v=None, d_ff=None,
norm='BatchNorm', attn_dropout=0., dropout=0., activation='gelu',
res_attention=False, n_layers=1, pre_norm=False, store_attn=False):
super().__init__()
self.layers = nn.ModuleList([TSTEncoderLayer(q_len, d_model, n_heads=n_heads, d_k=d_k, d_v=d_v, d_ff=d_ff, norm=norm,
attn_dropout=attn_dropout, dropout=dropout,
activation=activation, res_attention=res_attention,
pre_norm=pre_norm, store_attn=store_attn) for i in range(n_layers)])
self.res_attention = res_attention
def forward(self, src:Tensor, key_padding_mask:Optional[Tensor]=None, attn_mask:Optional[Tensor]=None):
output = src
scores = None
if self.res_attention:
for mod in self.layers: output, scores = mod(output, prev=scores, key_padding_mask=key_padding_mask, attn_mask=attn_mask)
return output
else:
for mod in self.layers: output = mod(output, key_padding_mask=key_padding_mask, attn_mask=attn_mask)
return output
class TSTEncoderLayer(nn.Module):
def __init__(self, q_len, d_model, n_heads, d_k=None, d_v=None, d_ff=256, store_attn=False,
norm='BatchNorm', attn_dropout=0, dropout=0., bias=True, activation="gelu", res_attention=False, pre_norm=False):
super().__init__()
assert not d_model%n_heads, f"d_model ({d_model}) must be divisible by n_heads ({n_heads})"
d_k = d_model // n_heads if d_k is None else d_k
d_v = d_model // n_heads if d_v is None else d_v
# Multi-Head attention
self.res_attention = res_attention
self.self_attn = _MultiheadAttention(d_model, n_heads, d_k, d_v, attn_dropout=attn_dropout, proj_dropout=dropout, res_attention=res_attention)
# Add & Norm
self.dropout_attn = nn.Dropout(dropout)
if "batch" in norm.lower():
self.norm_attn = nn.Sequential(Transpose(1,2), nn.BatchNorm1d(d_model), Transpose(1,2))
else:
self.norm_attn = nn.LayerNorm(d_model)
# Position-wise Feed-Forward
self.ff = nn.Sequential(nn.Linear(d_model, d_ff, bias=bias),
get_activation_fn(activation),
nn.Dropout(dropout),
nn.Linear(d_ff, d_model, bias=bias))
# Add & Norm
self.dropout_ffn = nn.Dropout(dropout)
if "batch" in norm.lower():
self.norm_ffn = nn.Sequential(Transpose(1,2), nn.BatchNorm1d(d_model), Transpose(1,2))
else:
self.norm_ffn = nn.LayerNorm(d_model)
self.pre_norm = pre_norm
self.store_attn = store_attn
def forward(self, src:Tensor, prev:Optional[Tensor]=None, key_padding_mask:Optional[Tensor]=None, attn_mask:Optional[Tensor]=None) -> Tensor:
# Multi-Head attention sublayer
if self.pre_norm:
src = self.norm_attn(src)
## Multi-Head attention
if self.res_attention:
src2, attn, scores = self.self_attn(src, src, src, prev, key_padding_mask=key_padding_mask, attn_mask=attn_mask)
else:
src2, attn = self.self_attn(src, src, src, key_padding_mask=key_padding_mask, attn_mask=attn_mask)
if self.store_attn:
self.attn = attn
## Add & Norm
src = src + self.dropout_attn(src2) # Add: residual connection with residual dropout
if not self.pre_norm:
src = self.norm_attn(src)
# Feed-forward sublayer
if self.pre_norm:
src = self.norm_ffn(src)
## Position-wise Feed-Forward
src2 = self.ff(src)
## Add & Norm
src = src + self.dropout_ffn(src2) # Add: residual connection with residual dropout
if not self.pre_norm:
src = self.norm_ffn(src)
if self.res_attention:
return src, scores
else:
return src
class _MultiheadAttention(nn.Module):
def __init__(self, d_model, n_heads, d_k=None, d_v=None, res_attention=False, attn_dropout=0., proj_dropout=0., qkv_bias=True, lsa=False):
"""Multi Head Attention Layer
Input shape:
Q: [batch_size (bs) x max_q_len x d_model]
K, V: [batch_size (bs) x q_len x d_model]
mask: [q_len x q_len]
"""
super().__init__()
d_k = d_model // n_heads if d_k is None else d_k
d_v = d_model // n_heads if d_v is None else d_v
self.n_heads, self.d_k, self.d_v = n_heads, d_k, d_v
self.W_Q = nn.Linear(d_model, d_k * n_heads, bias=qkv_bias)
self.W_K = nn.Linear(d_model, d_k * n_heads, bias=qkv_bias)
self.W_V = nn.Linear(d_model, d_v * n_heads, bias=qkv_bias)
# Scaled Dot-Product Attention (multiple heads)
self.res_attention = res_attention
self.sdp_attn = _ScaledDotProductAttention(d_model, n_heads, attn_dropout=attn_dropout, res_attention=self.res_attention, lsa=lsa)
# Poject output
self.to_out = nn.Sequential(nn.Linear(n_heads * d_v, d_model), nn.Dropout(proj_dropout))
def forward(self, Q:Tensor, K:Optional[Tensor]=None, V:Optional[Tensor]=None, prev:Optional[Tensor]=None,
key_padding_mask:Optional[Tensor]=None, attn_mask:Optional[Tensor]=None):
bs = Q.size(0)
if K is None: K = Q
if V is None: V = Q
# Linear (+ split in multiple heads)
q_s = self.W_Q(Q).view(bs, -1, self.n_heads, self.d_k).transpose(1,2) # q_s : [bs x n_heads x max_q_len x d_k]
k_s = self.W_K(K).view(bs, -1, self.n_heads, self.d_k).permute(0,2,3,1) # k_s : [bs x n_heads x d_k x q_len] - transpose(1,2) + transpose(2,3)
v_s = self.W_V(V).view(bs, -1, self.n_heads, self.d_v).transpose(1,2) # v_s : [bs x n_heads x q_len x d_v]
# Apply Scaled Dot-Product Attention (multiple heads)
if self.res_attention:
output, attn_weights, attn_scores = self.sdp_attn(q_s, k_s, v_s, prev=prev, key_padding_mask=key_padding_mask, attn_mask=attn_mask)
else:
output, attn_weights = self.sdp_attn(q_s, k_s, v_s, key_padding_mask=key_padding_mask, attn_mask=attn_mask)
# output: [bs x n_heads x q_len x d_v], attn: [bs x n_heads x q_len x q_len], scores: [bs x n_heads x max_q_len x q_len]
# back to the original inputs dimensions
output = output.transpose(1, 2).contiguous().view(bs, -1, self.n_heads * self.d_v) # output: [bs x q_len x n_heads * d_v]
output = self.to_out(output)
if self.res_attention: return output, attn_weights, attn_scores
else: return output, attn_weights
class _ScaledDotProductAttention(nn.Module):
r"""Scaled Dot-Product Attention module (Attention is all you need by Vaswani et al., 2017) with optional residual attention from previous layer
(Realformer: Transformer likes residual attention by He et al, 2020) and locality self sttention (Vision Transformer for Small-Size Datasets
by Lee et al, 2021)"""
def __init__(self, d_model, n_heads, attn_dropout=0., res_attention=False, lsa=False):
super().__init__()
self.attn_dropout = nn.Dropout(attn_dropout)
self.res_attention = res_attention
head_dim = d_model // n_heads
self.scale = nn.Parameter(torch.tensor(head_dim ** -0.5), requires_grad=lsa)
self.lsa = lsa
def forward(self, q:Tensor, k:Tensor, v:Tensor, prev:Optional[Tensor]=None, key_padding_mask:Optional[Tensor]=None, attn_mask:Optional[Tensor]=None):
'''
Input shape:
q : [bs x n_heads x max_q_len x d_k]
k : [bs x n_heads x d_k x seq_len]
v : [bs x n_heads x seq_len x d_v]
prev : [bs x n_heads x q_len x seq_len]
key_padding_mask: [bs x seq_len]
attn_mask : [1 x seq_len x seq_len]
Output shape:
output: [bs x n_heads x q_len x d_v]
attn : [bs x n_heads x q_len x seq_len]
scores : [bs x n_heads x q_len x seq_len]
'''
# Scaled MatMul (q, k) - similarity scores for all pairs of positions in an input sequence
attn_scores = torch.matmul(q, k) * self.scale # attn_scores : [bs x n_heads x max_q_len x q_len]
# Add pre-softmax attention scores from the previous layer (optional)
if prev is not None: attn_scores = attn_scores + prev
# Attention mask (optional)
if attn_mask is not None: # attn_mask with shape [q_len x seq_len] - only used when q_len == seq_len
if attn_mask.dtype == torch.bool:
attn_scores.masked_fill_(attn_mask, -np.inf)
else:
attn_scores += attn_mask
# Key padding mask (optional)
if key_padding_mask is not None: # mask with shape [bs x q_len] (only when max_w_len == q_len)
attn_scores.masked_fill_(key_padding_mask.unsqueeze(1).unsqueeze(2), -np.inf)
# normalize the attention weights
attn_weights = F.softmax(attn_scores, dim=-1) # attn_weights : [bs x n_heads x max_q_len x q_len]
attn_weights = self.attn_dropout(attn_weights)
# compute the new values given the attention weights
output = torch.matmul(attn_weights, v) # output: [bs x n_heads x max_q_len x d_v]
if self.res_attention: return output, attn_weights, attn_scores
else: return output, attn_weights
class PatchTST(nn.Module):
def __init__(self,
enc_in=321,
seq_len=336,
pred_len=96,
e_layers=3,
n_heads=16,
d_model=128,
d_ff=256,
dropout=0.2,
fc_dropout=0.2,
head_dropout=0.2,
patch_len=16,
stride=8,
individual=0,
padding_patch="end",
revin=1,
affine=0,
subtract_last=0,
decomposition=0,
kernel_size=25,
max_seq_len:Optional[int]=1024,
d_k:Optional[int]=None,
d_v:Optional[int]=None,
norm:str='BatchNorm',
attn_dropout:float=0.,
act:str="gelu",
key_padding_mask:bool='auto',
padding_var:Optional[int]=None,
attn_mask:Optional[Tensor]=None,
res_attention:bool=True,
pre_norm:bool=False,
store_attn:bool=False,
pe:str='zeros',
learn_pe:bool=True,
pretrain_head:bool=False,
head_type='flatten',
verbose:bool=False,
**kwargs):
super().__init__()
# load parameters
c_in = enc_in
context_window = seq_len
target_window = pred_len
n_layers = e_layers
# model
self.decomposition = decomposition
if self.decomposition:
self.decomp_module = series_decomp(kernel_size)
self.model_trend = PatchTST_backbone(c_in=c_in, context_window = context_window, target_window=target_window, patch_len=patch_len, stride=stride,
max_seq_len=max_seq_len, n_layers=n_layers, d_model=d_model,
n_heads=n_heads, d_k=d_k, d_v=d_v, d_ff=d_ff, norm=norm, attn_dropout=attn_dropout,
dropout=dropout, act=act, key_padding_mask=key_padding_mask, padding_var=padding_var,
attn_mask=attn_mask, res_attention=res_attention, pre_norm=pre_norm, store_attn=store_attn,
pe=pe, learn_pe=learn_pe, fc_dropout=fc_dropout, head_dropout=head_dropout, padding_patch = padding_patch,
pretrain_head=pretrain_head, head_type=head_type, individual=individual, revin=revin, affine=affine,
subtract_last=subtract_last, verbose=verbose, **kwargs)
self.model_res = PatchTST_backbone(c_in=c_in, context_window = context_window, target_window=target_window, patch_len=patch_len, stride=stride,
max_seq_len=max_seq_len, n_layers=n_layers, d_model=d_model,
n_heads=n_heads, d_k=d_k, d_v=d_v, d_ff=d_ff, norm=norm, attn_dropout=attn_dropout,
dropout=dropout, act=act, key_padding_mask=key_padding_mask, padding_var=padding_var,
attn_mask=attn_mask, res_attention=res_attention, pre_norm=pre_norm, store_attn=store_attn,
pe=pe, learn_pe=learn_pe, fc_dropout=fc_dropout, head_dropout=head_dropout, padding_patch = padding_patch,
pretrain_head=pretrain_head, head_type=head_type, individual=individual, revin=revin, affine=affine,
subtract_last=subtract_last, verbose=verbose, **kwargs)
else:
self.model = PatchTST_backbone(c_in=c_in, context_window = context_window, target_window=target_window, patch_len=patch_len, stride=stride,
max_seq_len=max_seq_len, n_layers=n_layers, d_model=d_model,
n_heads=n_heads, d_k=d_k, d_v=d_v, d_ff=d_ff, norm=norm, attn_dropout=attn_dropout,
dropout=dropout, act=act, key_padding_mask=key_padding_mask, padding_var=padding_var,
attn_mask=attn_mask, res_attention=res_attention, pre_norm=pre_norm, store_attn=store_attn,
pe=pe, learn_pe=learn_pe, fc_dropout=fc_dropout, head_dropout=head_dropout, padding_patch = padding_patch,
pretrain_head=pretrain_head, head_type=head_type, individual=individual, revin=revin, affine=affine,
subtract_last=subtract_last, verbose=verbose, **kwargs)
def forward(self, x):
x = x[..., 0] # x: [Batch, Input length, Channel]
if self.decomposition:
res_init, trend_init = self.decomp_module(x)
res_init, trend_init = res_init.permute(0,2,1), trend_init.permute(0,2,1) # x: [Batch, Channel, Input length]
res = self.model_res(res_init)
trend = self.model_trend(trend_init)
x = res + trend
x = x.permute(0,2,1) # x: [Batch, Input length, Channel]
else:
x = x.permute(0,2,1) # x: [Batch, Channel, Input length]
x = self.model(x)
x = x.permute(0,2,1) # x: [Batch, Input length, Channel]
return x.unsqueeze(-1)
if __name__ == "__main__":
from torchinfo import summary
model = PatchTST()
summary(model, [64, 336, 321, 1])