-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathOthello.py
472 lines (441 loc) · 19.3 KB
/
Othello.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
import numpy as np
import random
import math
import time
from datetime import datetime, date
import functools
# values = [[100, -5, 10, 5, 5, 10, -5, 100],
# [-5, -45, 1, 1, 1, 1, -45, -5],
# [10, 1, 3, 2, 2, 3, 1, 10],
# [5, 1, 2, 1, 1, 2, 1, 5],
# [5, 1, 2, 1, 1, 2, 1, 5],
# [10, 1, 3, 2, 2, 3, 1, 10],
# [-5, -45, 1, 1, 1, 1, -45, -5],
# [100, -5, 10, 5, 5, 10, -5, 100]
# ]
xdirection = [-1, -1, 0, 1, 1, 1, 0, -1]
ydirection = [0, 1, 1, 1, 0, -1, -1, -1]
COLOR_BLACK = -1
COLOR_WHITE = 1
COLOR_NONE = 0
# values = np.array([[500, -25, 10, 5, 5, 10, -25, 500],
# [-25, -45, 1, 1, 1, 1, -45, -25],
# [10, 1, 3, 2, 2, 3, 1, 10],
# [5, 1, 2, 1, 1, 2, 1, 5],
# [5, 1, 2, 1, 1, 2, 1, 5],
# [10, 1, 3, 2, 2, 3, 1, 10],
# [-25, -45, 1, 1, 1, 1, -45, -25],
# [500, -25, 10, 5, 5, 10, -25, 500]])
# values = np.array([90, -60, 10, 10, 10, 10, -60, 90],
# [2, -60, -80, 5, 5, 5, 5, -80, -60],
# [3, 10, 5, 1, 1, 1, 1, 5, 10],
# [4, 10, 5, 1, 1, 1, 1, 5, 10],
# [5, 10, 5, 1, 1, 1, 1, 5, 10],
# [6, 10, 5, 1, 1, 1, 1, 5, 10],
# [7, -60, -80, 5, 5, 5, 5, -80, -60],
# [8, 90, -60, 10, 10, 1010, -60, 90])
# values = [[80, -20, 8, 6, 6, 8, -20, 80],
# [-20, -20, 0, -1, -1, 0, -20, -20],
# [8, 0, 3, 5, 5, 3, 0, 8],
# [6, -1, 5, 1, 1, 5, -1, 6],
# [6, -1, 5, 1, 1, 5, -1, 6],
# [8, 0, 3, 5, 5, 3, 0, 8],
# [-20, -20, 0, -1, -1, 0, -20, -20],
# [80, -20, 8, 6, 6, 8, -20, 80]
# ]
def cmp(a, b):
if b[0] == a[0]:
if a[1] < b[1]:
return -1
else:
return 1
if a[0] < b[0]:
return 1
else:
return -1
# don't change the class name
class AI(object):
# chessboard_size, color, time_out passed from agent
def __init__(self, chessboard_size, color, time_out):
self.chessboard_size = chessboard_size
# You are white or black
self.values1 = [[100, -5, 10, 5, 5, 10, -5, 100],
[-5, -45, 1, 1, 1, 1, -45, -5],
[10, 1, 3, 2, 2, 3, 1, 10],
[5, 1, 2, 1, 1, 2, 1, 5],
[5, 1, 2, 1, 1, 2, 1, 5],
[10, 1, 3, 2, 2, 3, 1, 10],
[-5, -45, 1, 1, 1, 1, -45, -5],
[100, -5, 10, 5, 5, 10, -5, 100]
]
self.values2 = [[80, -20, 8, 6, 6, 8, -20, 80],
[-20, -20, 0, -1, -1, 0, -20, -20],
[8, 0, 3, 5, 5, 3, 0, 8],
[6, -1, 5, 1, 1, 5, -1, 6],
[6, -1, 5, 1, 1, 5, -1, 6],
[8, 0, 3, 5, 5, 3, 0, 8],
[-20, -20, 0, -1, -1, 0, -20, -20],
[80, -20, 8, 6, 6, 8, -20, 80]
]
self.values3 = np.array([[500, -25, 10, 5, 5, 10, -25, 500],
[-25, -45, 1, 1, 1, 1, -45, -25],
[10, 1, 3, 2, 2, 3, 1, 10],
[5, 1, 2, 1, 1, 2, 1, 5],
[5, 1, 2, 1, 1, 2, 1, 5],
[10, 1, 3, 2, 2, 3, 1, 10],
[-25, -45, 1, 1, 1, 1, -45, -25],
[500, -25, 10, 5, 5, 10, -25, 500]])
self.values4 = np.array([[500, 5, 25, 15, 15, 25, 5, 500],
[5, -100, 1, 1, 1, 1, -100, 5],
[25, 1, 3, 2, 2, 3, 1, 25],
[15, 1, 2, 1, 1, 2, 1, 15],
[15, 1, 2, 1, 1, 2, 1, 15],
[25, 1, 3, 2, 2, 3, 1, 25],
[5, -100, 1, 1, 1, 1, -100, 5],
[500, 5, 25, 15, 15, 25, 5, 500]])
self.values5 = np.array([[500, 20, 25, 15, 15, 25, 20, 500],
[20, -120, 1, 1, 1, 1, -120, 20],
[25, 1, 3, 2, 2, 3, 1, 25],
[15, 1, 2, 1, 1, 2, 1, 15],
[15, 1, 2, 1, 1, 2, 1, 15],
[25, 1, 3, 2, 2, 3, 1, 25],
[20, -120, 1, 1, 1, 1, -120, 20],
[500, 20, 25, 15, 15, 25, 20, 500]])
self.color = color
self.values = self.values4
self.const_int = 500
# if self.color==COLOR_BLACK:
# self.values=self.values1
# the max time you should use, your algorithm's run time must not exceed the time limit.
self.time_out = time_out
# You need add your decision into your candidate_list. System will get the end of your candidate_list as yourision .
self.candidate_list = []
self.movable_list = []
if self.color == COLOR_BLACK:
self.count = 62
else:
self.count = 61
# The input is current chessboard.
def go(self, chessboard):
# Clear candidate_list, must do this step
self.count -= 2
self.candidate_list.clear()
# ==================================================================
# Write your algorithm here
# Here is the simplest sample:Random decision
# a = datetime.now() # 闁兼儳鍢茬欢杈亹閹惧啿顤呴柡鍐ㄧ埣濡拷
self.movable_list = self.movable(chessboard, self.color)
for k in self.movable_list:
self.candidate_list.append(k)
# if len(np.where(chessboard == 0) < 10 and len(self.movable_list) != 0):
# self.FinalCal(chessboard, self.color)
if len(self.movable_list) != 0:
self.candidate_list.append(self.movable_list[0])
if self.count < 14:
self.MinMax(chessboard, 7, -9999999, 9999999)
else:
self.MinMax(chessboard, 5, -9999999, 9999999)
if self.candidate_list[-1] == (0, 0):
self.values[1][1] += 200
if self.candidate_list[-1] == (7, 0):
self.values[6][1] += 200
if self.candidate_list[-1] == (7, 7):
self.values[6][6] += 200
if self.candidate_list[-1] == (0, 7):
self.values[1][6] += 200
# b = datetime.now() # 闁兼儳鍢茶ぐ鍥亹閹惧啿顤呴柡鍐ㄧ埣濡拷
# durn = (b - a).total_seconds() # 濞戞挶鍊撻柌婊堝籍閸洘锛熺€瑰壊鍣槐婵嬬嵁閺堝吀绨扮紒澶嬪笚濡绮堥崫鍕瘔闁哄鎷�
# if durn <= 3 and self.count <= 8:
# time.sleep(3)
# def FinalMinMax(self, chessboard, color):
# temp_move_list = self.movable(chessboard, color)
# if len(temp_move_list) == 0:
# if len(self.movable(chessboard, -color)) == 0:
# return self.calculatevalue3(chessboard)
# return self.FinalCal(chessboard, -color)
#
# for move in temp_move_list:
# chessboard, relist = self.Move(chessboard, move, color)
# val = self.FinalCal(chessboard, -self.color)
# chessboard = self.Moveback(chessboard, -self.color, relist)
# if val == 9999999:
# self.candidate_list[-1] = move
# return val
#
# # def FinalCal(self, chessboard, color):
# # for
# def calculatevalue3(self, chessboard):
# mlen = len(np.where(chessboard == self.color))
# ylen = len(np.where(chessboard == -self.color))
# if mlen > ylen:
# return 9999999
# return mlen
def Move(self, chessboard, move, color):
chessboard[move[0]][move[1]] = color
rvlist = [move]
for m in range(8):
newx = move[0] + xdirection[m]
newy = move[1] + ydirection[m]
if 0 <= newx <= 7 and 0 <= newy <= 7 and chessboard[newx][newy] == -color:
while 0 <= newx <= 7 and 0 <= newy <= 7 and chessboard[newx][newy] == -color:
newx += xdirection[m]
newy += ydirection[m]
if 0 <= newx <= 7 and 0 <= newy <= 7 and chessboard[newx][newy] == color:
newxx = move[0] + xdirection[m]
newyy = move[1] + ydirection[m]
while 0 <= newxx <= 7 and 0 <= newyy <= 7 and chessboard[newxx][newyy] == -color:
chessboard[newxx][newyy] = color
rvlist.append((newxx, newyy))
newxx += xdirection[m]
newyy += ydirection[m]
return chessboard, rvlist
def movable(self, chessboard, color):
weight_list = []
idx = np.where(chessboard == COLOR_NONE)
idx = list(zip(idx[0], idx[1]))
temp_movable_list = []
for i in range(len(idx)):
for k in range(8):
tempx = idx[i][0] + xdirection[k]
tempy = idx[i][1] + ydirection[k]
if (tempx < 0 or tempx > 7) or (tempy < 0 or tempy > 7):
continue
if chessboard[tempx][tempy] == 0:
continue
if chessboard[tempx][tempy] != color:
while tempx >= 0 and tempy >= 0 and tempx <= 7 and tempy <= 7 and chessboard[tempx][tempy] != 0 and \
chessboard[tempx][tempy] != color:
tempx += xdirection[k]
tempy += ydirection[k]
if tempx < 0 or tempy > 7 or tempy < 0 or tempx > 7:
continue
if chessboard[tempx][tempy] == color:
temp_movable_list.append((idx[i][0], idx[i][1]))
weight_list.append(self.values[idx[i][0]][idx[i][1]])
break
if len(temp_movable_list) != 0:
weight_list, temp_movable_list = zip(
*sorted(list(zip(weight_list, temp_movable_list)), key=functools.cmp_to_key(cmp)))
return temp_movable_list
def calculatevalue(self, chessboard, cap, relen=0):
blank = len(np.where(chessboard == COLOR_NONE))
stabl = 0
current_value = 0
if blank > 50:
current_value = cap * 10 + 2 * relen
elif blank > 20:
current_value = cap * 20 + relen
else:
current_value = cap * 10 + 6 * relen
for i in range(8):
for j in range(8):
if self.color == chessboard[i][j]:
current_value += self.values[i][j]
elif self.color == -chessboard[i][j]:
current_value -= self.values[i][j]
st = self.stable(chessboard)
if chessboard[0][7] != 0 or chessboard[0][0] != 0 or chessboard[7][0] != 0 or chessboard[7][7] != 0:
stabl += st*2
current_value += 10 * stabl
return current_value
def stable(self, chessboard):
stablenum = 0
if chessboard[0][0] == self.color:
stablenum += 1
i = 1
while i <= 7 and chessboard[0][i] == self.color:
stablenum += 1
i += 1
i = 1
while i <= 7 and chessboard[i][0] == self.color:
stablenum += 1
i += 1
elif chessboard[0][0] == -self.color:
stablenum -= 1
i = 1
while i <= 7 and chessboard[0][i] == -self.color:
stablenum -= 1
i += 1
i = 1
while i <= 7 and chessboard[i][0] == -self.color:
stablenum -= 1
i += 1
if chessboard[7][0] == self.color:
stablenum += 1
i = 1
while i <= 7 and chessboard[7][i] == self.color:
stablenum += 1
i += 1
i = 6
while i >= 0 and chessboard[i][0] == self.color:
stablenum += 1
i -= 1
elif chessboard[7][0] == -self.color:
stablenum -= 1
i = 1
while i <= 7 and chessboard[7][i] == -self.color:
stablenum -= 1
i += 1
i = 6
while i >= 0 and chessboard[i][0] == -self.color:
stablenum -= 1
i -= 1
if chessboard[0][7] == self.color:
stablenum += 1
i = 1
while i <= 7 and chessboard[i][7] == self.color:
stablenum += 1
i += 1
i = 6
while i >= 0 and chessboard[0][i] == self.color:
stablenum += 1
i -= 1
elif chessboard[0][7] == -self.color:
stablenum -= 1
i = 1
while i <= 7 and chessboard[i][7] == -self.color:
stablenum -= 1
i += 1
i = 6
while i >= 0 and chessboard[0][i] == -self.color:
stablenum -= 1
i -= 1
if chessboard[7][7] == self.color:
stablenum += 1
i = 6
while i >= 0 and chessboard[7][i] == self.color:
stablenum += 1
i -= 1
i = 6
while i >= 0 and chessboard[i][7] == self.color:
stablenum += 1
i -= 1
elif chessboard[7][7] == -self.color:
stablenum -= 1
i = 6
while i >= 0 and chessboard[7][i] == -self.color:
stablenum -= 1
i -= 1
i = 6
while i >= 0 and chessboard[i][7] == -self.color:
stablenum -= 1
i -= 1
return stablenum
def calculatevalue2(self, chessboard, color):
mlen = len(np.where(chessboard == self.color)[1])
ylen = len(np.where(chessboard == -self.color)[1])
if mlen > ylen:
if color == self.color:
return 999999
if color == -self.color:
return -999999
return mlen
def Min(self, chessboard, depth, alp, beta, relen=0):
min_val = 99999
temp_move_list = self.movable(chessboard, -self.color)
if depth <= 0:
return self.calculatevalue(chessboard, -len(temp_move_list), -relen)
if len(temp_move_list) == 0:
if len(self.movable(chessboard, self.color)) == 0:
return self.calculatevalue2(chessboard, self.color)
return self.Max(chessboard, depth, alp, beta)
for move in temp_move_list:
chessboard, relist = self.Move(chessboard, move, -self.color)
val = self.Max(chessboard, depth - 1, alp, beta, len(relist))
chessboard = self.Moveback(chessboard, self.color, relist)
min_val = min(min_val, val)
if val == -999999:
return val
if val <= alp:
return val
beta = min(beta, val)
return min_val
def Max(self, chessboard, depth, alp, beta, relen=0):
max_val = -99999
temp_move_list = self.movable(chessboard, self.color)
if depth <= 0:
return self.calculatevalue(chessboard, len(temp_move_list), relen)
if len(temp_move_list) == 0:
if len(self.movable(chessboard, -self.color)) == 0:
return self.calculatevalue2(chessboard, -self.color)
return self.Min(chessboard, depth, alp, beta)
for move in temp_move_list:
chessboard, relist = self.Move(chessboard, move, self.color)
val = self.Min(chessboard, depth - 1, alp, beta, len(relist))
chessboard = self.Moveback(chessboard, -self.color, relist)
max_val = max(max_val, val)
if val == 999999:
return val
if val >= beta:
return val
alp = max(alp, val)
return max_val
def MinMax(self, chessboard, depth, alp, beta):
best_value = -999999
for move in self.movable_list:
chessboard, relist = self.Move(chessboard, move, self.color)
val = self.Min(chessboard, depth - 1, alp, beta)
chessboard = self.Moveback(chessboard, -self.color, relist)
if val == 999999:
self.candidate_list[-1] = move
return
if val > best_value:
best_value = val
self.candidate_list[-1] = move
return
# def AlpBeta(self, chessboard, color, alp, beta, depth):
# temp_move_list = self.movable(chessboard, color)
#
# if depth <= 0:
# return self.calculatevalue(chessboard, len(temp_move_list))
# best_move = None
# if len(temp_move_list) == 0:
# if len(self.movable(chessboard, -color)) == 0:
# return self.calculatevalue(chessboard, 0)
# return -self.AlpBeta(chessboard, -color, -beta, -alp, depth)
# for move in temp_move_list:
# chessboard, rvlist = self.Move(chessboard, move, color)
# val = -self.AlpBeta(chessboard, -color, -beta, -alp, depth - 1)
# chessboard = self.Moveback(chessboard, -color, rvlist)
# if val >= beta:
# return beta
# if val > alp:
# alp = val
# best_move = move
# if depth == 6:
# self.candidate_list[-1] = best_move
# return alp
def Moveback(self, chessboard, color, rvlist):
for k in rvlist:
if k == rvlist[0]:
chessboard[k[0]][k[1]] = 0
else:
chessboard[k[0]][k[1]] = color
return chessboard
# ==============Find new pos========================================
# Make sure that the position of your decision in chess board is empty.
# If not, the system will return error.
# Add your decision into candidate_list, Records the chess board
# You need add all the positions which is valid
# candidate_list example: [(3,3),(4,4)]
# You need append your decision at the end of the candidate_list,
# we will choose the last element of the candidate_list as the position you choose
# If there is no valid position, you must return a empty list.
# a_time = datetime.now()
# board = np.array(
# [[0, 1, -1, 0, 0, 0, -1, 0],
# [-1, 0, 1, -1, 0, -1, 0, -1],
# [-1, -1, -1, 1, -1, -1, -1, -1],
# [-1, -1, -1, -1, -1, -1, -1, -1],
# [-1, -1, -1, -1, -1, -1, -1, -1],
# [-1, -1, -1, -1, -1, -1, -1, -1],
# [0, 0, -1, 0, 0, 0, 0, -1],
# [0, 0, 0, 0, 0, 0, 0, 0], ]
#
# )
# ai = AI(8, -1, 100)
# ai.go(board)
# print(ai.candidate_list)
# b_time = datetime.now() # 閼惧嘲褰囪ぐ鎾冲閺冨爼妫�
# durn = (b_time - a_time).total_seconds() # 娑撱倓閲滈弮鍫曟?瀹割噯绱濋獮鏈典簰缁夋帗妯夌粈鍝勫毉閺夛拷
# print(durn)