-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdata.py
212 lines (185 loc) · 8.11 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
""" Generate a DataLoader """
import logging
import random
from pathlib import Path
import os
from functools import partial
import torch
from torch.nn.utils.rnn import pad_sequence
from utils import sequence_mask
logger = logging.getLogger('data')
def load_dataset(path, data_type):
"""
Dataset generator.
:param path: path to the directory of BERTified data
:param data_type: 'train', 'valid', or 'test'
:return: A list of datasets (lazily loaded)
"""
# Read list of files and sort
files = sorted(Path(path).glob(f'{data_type}_[0-9]*.pt'))
# random.shuffle(files)
for f in files:
ds = torch.load(f)
logger.debug(f'Loading {data_type} dataset... (file: '
f'{os.path.basename(f)}, num_exs: {len(ds)})')
yield ds
class DataLoader:
"""Dynamically loads dataset from chunked datafiles and returns a
DataIterator
datasets: iterator for datasets (chunked bertified files)
cur_data_iter: given a dataset (paired docs), this yields batchified examples
"""
def __init__(self, datasets, model_type, batch_size, max_ntokens_src,
spt_ids_B, spt_ids_C, eos_mapping):
# Book-keeping
self.datasets = datasets
self.model_type = model_type
self.batch_size = batch_size
self.max_ntokens_src = max_ntokens_src
self.spt_ids_B = spt_ids_B
self.spt_ids_C = spt_ids_C
self.eos_mapping = eos_mapping
self.cur_data_iter = self._next_ds_iter(datasets)
def __iter__(self):
while self.cur_data_iter is not None:
for batch in self.cur_data_iter:
yield batch
self.cur_data_iter = self._next_ds_iter(self.datasets)
def _next_ds_iter(self, ds_iter):
try:
self.cur_dataset = next(ds_iter)
except TypeError:
if self.datasets is None:
return None
if isinstance(ds_iter, list): # data from doc_scorer
self.cur_dataset = ds_iter
self.datasets = None # consume
except StopIteration:
return None
return DataIterator(self.cur_dataset,
model_type=self.model_type,
batch_size=self.batch_size,
max_ntokens_src=self.max_ntokens_src,
spt_ids_B=self.spt_ids_B,
spt_ids_C=self.spt_ids_C,
eos_mapping=self.eos_mapping)
class DataIterator:
"""Process and batchify examples"""
def __init__(self, dataset, model_type, batch_size, max_ntokens_src,
spt_ids_B, spt_ids_C, eos_mapping=None):
self.dataset = dataset
self.model_type = model_type
self.batch_size = batch_size
self.max_ntokens_src = max_ntokens_src
# Special tokens and bos/eos mappings
self.spt_ids_B = spt_ids_B # Indicies by BERT Tokenizer
self.spt_ids_C = spt_ids_C # Indicies by Custom embeddings dictionary
self.eos_mapping = eos_mapping
def batchify(self):
"""Given examples from a dataset,
(1) create encoded inputs by interpolating necessary BERT special
tokens with source and target sequences
(2) create segment indicating sequence
and yield minibatch of the processed examples
"""
# random.shuffle(self.dataset)
proc_data = []
for ex in self.dataset:
if self.model_type == 'rel': # Src: doc+query, Tgt: doc labels
# Doc
inp = [self.spt_ids_B['[CLS]']]
segs = [0]
sent_lens = [0] + ex['src_sent_lens']
for i in range(len(sent_lens) - 1):
s, e = sent_lens[i], sent_lens[i+1]
if len(inp) + e - s >= self.max_ntokens_src - 1:
break
inp += ex['src'][s:e] + [self.spt_ids_B['[SEP]']]
segs += [0 if segs[-1] == 1 else 1] * (e - s + 1)
# Query
sent_lens = [0] + ex['tgtB_sent_lens']
for i in range(3): # Topics: 0. disease 1. gene, 2. demo
s, e = sent_lens[i], sent_lens[i+1]
inp += ex['tgtB'][s:e]
segs += [0 if segs[-1] == 1 else 1] * (e - s)
inp += [self.spt_ids_B['[SEP]']]
segs += [segs[-1]]
# With document-level labels
proc_data.append(
(inp, segs, ex['doc_label'], ex['qid'], ex['did']))
elif self.model_type == 'ext': # Src: doc, Tgt: token labels
# Doc
inp = [self.spt_ids_B['[CLS]']]
segs = [0]
sent_lens = [0] + ex['src_sent_lens']
for i in range(len(sent_lens) - 1):
s, e = sent_lens[i], sent_lens[i+1]
if len(inp) + e - s >= self.max_ntokens_src - 1:
break
inp += ex['src'][s:e]
segs += [0 if segs[-1] == 1 else 1] * (e - s)
inp += [self.spt_ids_B['[SEP]']]
segs += [segs[-1]]
# With token-level labels
proc_data.append((inp, segs,
[0] + ex['token_labels'][:len(inp)-2] + [0],
ex['qid'], ex['did']))
elif self.model_type == 'abs':
# src: Doc, target: Topic sentences
if ex['doc_label'] == 0: # Feed only relevant pairs
continue
# Doc
inp = [self.spt_ids_B['[CLS]']]
segs = [0]
sent_lens = [0] + ex['src_sent_lens']
for i in range(len(sent_lens) - 1):
s, e = sent_lens[i], sent_lens[i+1]
if len(inp) + e - s >= self.max_ntokens_src - 1:
break
inp += ex['src'][s:e]
segs += [0 if segs[-1] == 1 else 1] * (e - s)
inp += [self.spt_ids_B['[SEP]']]
segs += [segs[-1]]
sent_lens = [0] + ex['tgtC_sent_lens']
topics = ('disease', 'gene', 'demo', 'mesh', 'keywords')
for i, tp in enumerate(topics):
if tp == 'demo': # Ignored intentionally
continue
s, e = sent_lens[i], sent_lens[i+1]
bos = self.spt_ids_C[f'[unused{i}]']
eos = self.eos_mapping[bos]
tgt = [bos] + ex['tgtC'][s:e] + [eos]
proc_data.append((inp, segs, tgt, ex['qid'], ex['did']))
# This used to be here, and it worked. why not this time.
# proc_data.sort(key=lambda x: len(x[0]), reverse=True)
minibatch = []
for ex in proc_data:
minibatch.append(ex)
if len(minibatch) == self.batch_size:
yield minibatch
minibatch = []
if len(minibatch) > 0:
yield minibatch
def __iter__(self):
for batch in self.batchify():
t_batch = TensorBatch(batch, model_type=self.model_type)
yield t_batch
class TensorBatch:
"""minibatch of tensorfied examples"""
def __init__(self, batch, model_type, device='cuda'):
self.batch_size = len(batch)
pad_ = partial(pad_sequence, batch_first=True)
self.inp = pad_([torch.tensor(x[0]) for x in batch]).to(device)
lens = [next((i for i, v in enumerate(s) if v == 0), len(s))
for s in self.inp]
self.src_lens = torch.LongTensor(lens).to(device)
self.mask_inp = sequence_mask(self.src_lens, self.inp.size(1))
self.segs = pad_([torch.tensor(x[1]) for x in batch]).to(device)
if model_type == 'rel':
self.tgt = torch.tensor([x[2] for x in batch]).to(device)
elif model_type in ['ext', 'abs']:
self.tgt = pad_([torch.tensor(x[2]) for x in batch]).to(device)
self.qid = [x[3] for x in batch]
self.did = [x[4] for x in batch]
def __len__(self):
return self.batch_size