-
Notifications
You must be signed in to change notification settings - Fork 51
/
Copy pathtest.py
159 lines (125 loc) · 4.75 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
from __future__ import print_function
import argparse
import os
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.utils.data
import torchvision.transforms as transforms
from torch.autograd import Variable
import torch.nn.functional as F
import skimage
import skimage.io
import skimage.transform
import numpy as np
import time
from submodels import *
from dataloader import preprocess
from PIL import Image
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
parser = argparse.ArgumentParser(description='deepCpmpletion')
parser.add_argument('--loadmodel', default='',
help='load model')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='enables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)
model = s2dN(1)
model = nn.DataParallel(model, device_ids=[0])
model.cuda()
modelpath = os.path.join(ROOT_DIR, args.loadmodel)
if args.loadmodel is not None:
state_dict = torch.load(modelpath)["state_dict"]
model.load_state_dict(state_dict)
print('Number of model parameters: {}'.format(sum([p.data.nelement() for p in model.parameters()])))
def test(imgL,sparse,mask):
model.eval()
if args.cuda:
imgL = torch.FloatTensor(imgL).cuda()
sparse = torch.FloatTensor(sparse).cuda()
mask = torch.FloatTensor(mask).cuda()
imgL= Variable(imgL)
sparse = Variable(sparse)
mask = Variable(mask)
start_time = time.time()
with torch.no_grad():
outC, outN, maskC, maskN = model(imgL, sparse, mask)
tempMask = torch.zeros_like(outC)
predC = outC[:,0,:,:]
predN = outN[:,0,:,:]
tempMask[:, 0, :, :] = maskC
tempMask[:, 1, :, :] = maskN
predMask = F.softmax(tempMask)
predMaskC = predMask[:,0,:,:]
predMaskN = predMask[:,1,:,:]
pred1 = predC * predMaskC + predN * predMaskN
time_temp = (time.time() - start_time)
output1 = torch.squeeze(pred1)
return output1.data.cpu().numpy(),time_temp
def rmse(gt,img,ratio):
dif = gt[np.where(gt>ratio)] - img[np.where(gt>ratio)]
error = np.sqrt(np.mean(dif**2))
return error
def mae(gt,img,ratio):
dif = gt[np.where(gt>ratio)] - img[np.where(gt>ratio)]
error = np.mean(np.fabs(dif))
return error
def irmse(gt,img,ratio):
dif = 1.0/gt[np.where(gt>ratio)] - 1.0/img[np.where(gt>ratio)]
error = np.sqrt(np.mean(dif**2))
return error
def imae(gt,img,ratio):
dif = 1.0/gt[np.where(gt>ratio)] - 1.0/img[np.where(gt>ratio)]
error = np.mean(np.fabs(dif))
return error
def main():
processed = preprocess.get_transform(augment=False)
gt_fold = ''
left_fold = ''
lidar2_raw =''
gt = [img for img in os.listdir(gt_fold)]
image = [img for img in os.listdir(left_fold)]
lidar2 = [img for img in os.listdir(lidar2_raw)]
gt_test = [gt_fold + img for img in gt]
left_test = [left_fold + img for img in image]
sparse2_test = [lidar2_raw + img for img in lidar2]
left_test.sort()
sparse2_test.sort()
gt_test.sort()
time_all = 0.0
for inx in range(len(left_test)):
print(inx)
imgL_o = skimage.io.imread(left_test[inx])
imgL_o = np.reshape(imgL_o, [imgL_o.shape[0], imgL_o.shape[1],3])
imgL = processed(imgL_o).numpy()
imgL = np.reshape(imgL, [1, 3, imgL_o.shape[0], imgL_o.shape[1]])
gtruth = skimage.io.imread(gt_test[inx]).astype(np.float32)
gtruth = gtruth * 1.0 / 256.0
sparse = skimage.io.imread(sparse2_test[inx]).astype(np.float32)
sparse = sparse *1.0 / 256.0
mask = np.where(sparse > 0.0, 1.0, 0.0)
mask = np.reshape(mask, [imgL_o.shape[0], imgL_o.shape[1], 1])
sparse = np.reshape(sparse, [imgL_o.shape[0], imgL_o.shape[1], 1])
sparse = processed(sparse).numpy()
sparse = np.reshape(sparse, [1, 1, imgL_o.shape[0], imgL_o.shape[1]])
mask = processed(mask).numpy()
mask = np.reshape(mask, [1, 1, imgL_o.shape[0], imgL_o.shape[1]])
output1 = '' + left_test[inx].split('/')[-1]
pred, time_temp = test(imgL, sparse, mask)
pred = np.where(pred <= 0.0, 0.9, pred)
time_all = time_all+time_temp
print(time_temp)
pred_show = pred * 256.0
pred_show = pred_show.astype('uint16')
res_buffer = pred_show.tobytes()
img = Image.new("I",pred_show.T.shape)
img.frombytes(res_buffer,'raw',"I;16")
img.save(output1)
print("time: %.8f" % (time_all * 1.0 / 1000.0))
if __name__ == '__main__':
main()