forked from facebookresearch/faiss
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathIndexScalarQuantizer.cpp
324 lines (258 loc) · 8.85 KB
/
IndexScalarQuantizer.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
/**
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
// -*- c++ -*-
#include <faiss/IndexScalarQuantizer.h>
#include <cstdio>
#include <algorithm>
#include <omp.h>
#include <faiss/utils/utils.h>
#include <faiss/impl/FaissAssert.h>
#include <faiss/impl/AuxIndexStructures.h>
#include <faiss/impl/ScalarQuantizer.h>
namespace faiss {
/*******************************************************************
* IndexScalarQuantizer implementation
********************************************************************/
IndexScalarQuantizer::IndexScalarQuantizer
(int d, ScalarQuantizer::QuantizerType qtype,
MetricType metric):
Index(d, metric),
sq (d, qtype)
{
is_trained =
qtype == ScalarQuantizer::QT_fp16 ||
qtype == ScalarQuantizer::QT_8bit_direct;
code_size = sq.code_size;
}
IndexScalarQuantizer::IndexScalarQuantizer ():
IndexScalarQuantizer(0, ScalarQuantizer::QT_8bit)
{}
void IndexScalarQuantizer::train(idx_t n, const float* x)
{
sq.train(n, x);
is_trained = true;
}
void IndexScalarQuantizer::add(idx_t n, const float* x)
{
FAISS_THROW_IF_NOT (is_trained);
codes.resize ((n + ntotal) * code_size);
sq.compute_codes (x, &codes[ntotal * code_size], n);
ntotal += n;
}
void IndexScalarQuantizer::search(
idx_t n,
const float* x,
idx_t k,
float* distances,
idx_t* labels) const
{
FAISS_THROW_IF_NOT (is_trained);
FAISS_THROW_IF_NOT (metric_type == METRIC_L2 ||
metric_type == METRIC_INNER_PRODUCT);
#pragma omp parallel
{
InvertedListScanner* scanner = sq.select_InvertedListScanner
(metric_type, nullptr, true);
ScopeDeleter1<InvertedListScanner> del(scanner);
#pragma omp for
for (size_t i = 0; i < n; i++) {
float * D = distances + k * i;
idx_t * I = labels + k * i;
// re-order heap
if (metric_type == METRIC_L2) {
maxheap_heapify (k, D, I);
} else {
minheap_heapify (k, D, I);
}
scanner->set_query (x + i * d);
scanner->scan_codes (ntotal, codes.data(),
nullptr, D, I, k);
// re-order heap
if (metric_type == METRIC_L2) {
maxheap_reorder (k, D, I);
} else {
minheap_reorder (k, D, I);
}
}
}
}
DistanceComputer *IndexScalarQuantizer::get_distance_computer () const
{
ScalarQuantizer::SQDistanceComputer *dc =
sq.get_distance_computer (metric_type);
dc->code_size = sq.code_size;
dc->codes = codes.data();
return dc;
}
void IndexScalarQuantizer::reset()
{
codes.clear();
ntotal = 0;
}
void IndexScalarQuantizer::reconstruct_n(
idx_t i0, idx_t ni, float* recons) const
{
std::unique_ptr<ScalarQuantizer::Quantizer> squant(sq.select_quantizer ());
for (size_t i = 0; i < ni; i++) {
squant->decode_vector(&codes[(i + i0) * code_size], recons + i * d);
}
}
void IndexScalarQuantizer::reconstruct(idx_t key, float* recons) const
{
reconstruct_n(key, 1, recons);
}
/* Codec interface */
size_t IndexScalarQuantizer::sa_code_size () const
{
return sq.code_size;
}
void IndexScalarQuantizer::sa_encode (idx_t n, const float *x,
uint8_t *bytes) const
{
FAISS_THROW_IF_NOT (is_trained);
sq.compute_codes (x, bytes, n);
}
void IndexScalarQuantizer::sa_decode (idx_t n, const uint8_t *bytes,
float *x) const
{
FAISS_THROW_IF_NOT (is_trained);
sq.decode(bytes, x, n);
}
/*******************************************************************
* IndexIVFScalarQuantizer implementation
********************************************************************/
IndexIVFScalarQuantizer::IndexIVFScalarQuantizer (
Index *quantizer, size_t d, size_t nlist,
ScalarQuantizer::QuantizerType qtype,
MetricType metric, bool encode_residual)
: IndexIVF(quantizer, d, nlist, 0, metric),
sq(d, qtype),
by_residual(encode_residual)
{
code_size = sq.code_size;
// was not known at construction time
invlists->code_size = code_size;
is_trained = false;
}
IndexIVFScalarQuantizer::IndexIVFScalarQuantizer ():
IndexIVF(),
by_residual(true)
{
}
void IndexIVFScalarQuantizer::train_residual (idx_t n, const float *x)
{
sq.train_residual(n, x, quantizer, by_residual, verbose);
}
void IndexIVFScalarQuantizer::encode_vectors(idx_t n, const float* x,
const idx_t *list_nos,
uint8_t * codes,
bool include_listnos) const
{
std::unique_ptr<ScalarQuantizer::Quantizer> squant (sq.select_quantizer ());
size_t coarse_size = include_listnos ? coarse_code_size () : 0;
memset(codes, 0, (code_size + coarse_size) * n);
#pragma omp parallel if(n > 1)
{
std::vector<float> residual (d);
#pragma omp for
for (size_t i = 0; i < n; i++) {
int64_t list_no = list_nos [i];
if (list_no >= 0) {
const float *xi = x + i * d;
uint8_t *code = codes + i * (code_size + coarse_size);
if (by_residual) {
quantizer->compute_residual (
xi, residual.data(), list_no);
xi = residual.data ();
}
if (coarse_size) {
encode_listno (list_no, code);
}
squant->encode_vector (xi, code + coarse_size);
}
}
}
}
void IndexIVFScalarQuantizer::sa_decode (idx_t n, const uint8_t *codes,
float *x) const
{
std::unique_ptr<ScalarQuantizer::Quantizer> squant (sq.select_quantizer ());
size_t coarse_size = coarse_code_size ();
#pragma omp parallel if(n > 1)
{
std::vector<float> residual (d);
#pragma omp for
for (size_t i = 0; i < n; i++) {
const uint8_t *code = codes + i * (code_size + coarse_size);
int64_t list_no = decode_listno (code);
float *xi = x + i * d;
squant->decode_vector (code + coarse_size, xi);
if (by_residual) {
quantizer->reconstruct (list_no, residual.data());
for (size_t j = 0; j < d; j++) {
xi[j] += residual[j];
}
}
}
}
}
void IndexIVFScalarQuantizer::add_with_ids
(idx_t n, const float * x, const idx_t *xids)
{
FAISS_THROW_IF_NOT (is_trained);
std::unique_ptr<int64_t []> idx (new int64_t [n]);
quantizer->assign (n, x, idx.get());
size_t nadd = 0;
std::unique_ptr<ScalarQuantizer::Quantizer> squant(sq.select_quantizer ());
DirectMapAdd dm_add (direct_map, n, xids);
#pragma omp parallel reduction(+: nadd)
{
std::vector<float> residual (d);
std::vector<uint8_t> one_code (code_size);
int nt = omp_get_num_threads();
int rank = omp_get_thread_num();
// each thread takes care of a subset of lists
for (size_t i = 0; i < n; i++) {
int64_t list_no = idx [i];
if (list_no >= 0 && list_no % nt == rank) {
int64_t id = xids ? xids[i] : ntotal + i;
const float * xi = x + i * d;
if (by_residual) {
quantizer->compute_residual (xi, residual.data(), list_no);
xi = residual.data();
}
memset (one_code.data(), 0, code_size);
squant->encode_vector (xi, one_code.data());
size_t ofs = invlists->add_entry (list_no, id, one_code.data());
dm_add.add (i, list_no, ofs);
nadd++;
} else if (rank == 0 && list_no == -1) {
dm_add.add (i, -1, 0);
}
}
}
ntotal += n;
}
InvertedListScanner* IndexIVFScalarQuantizer::get_InvertedListScanner
(bool store_pairs) const
{
return sq.select_InvertedListScanner (metric_type, quantizer, store_pairs,
by_residual);
}
void IndexIVFScalarQuantizer::reconstruct_from_offset (int64_t list_no,
int64_t offset,
float* recons) const
{
std::vector<float> centroid(d);
quantizer->reconstruct (list_no, centroid.data());
const uint8_t* code = invlists->get_single_code (list_no, offset);
sq.decode (code, recons, 1);
for (int i = 0; i < d; ++i) {
recons[i] += centroid[i];
}
}
} // namespace faiss