-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathhomography_init.cc
573 lines (458 loc) · 17.9 KB
/
homography_init.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
/*
* Copyright (C) 1997-2017 JdeRobot Developers Team
*
* This program is free software; you can redistribute it and/or modifdisty
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Library General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* Authors : Eduardo Perdices <[email protected]>
*
*/
#include "./homography_init.h"
#include "./point.h"
#include "./feature.h"
#include "./config.h"
#include "extra/utils.h"
using std::shared_ptr;
using std::vector;
using std::cout;
using std::cerr;
using std::endl;
namespace sdvl {
HomographyInit::HomographyInit(Map * map, int min_shift) {
map_ = map;
min_shift_ = min_shift;
}
void HomographyInit::Reset() {
pixels1_.clear();
pixels2_.clear();
vectors1_.clear();
vectors2_.clear();
frame1_ = nullptr;
frame2_ = nullptr;
}
bool HomographyInit::InitFirstFrame(const shared_ptr<Frame> &frame) {
shared_ptr<Feature> feature;
Eigen::Vector3i corner;
int index, scale;
frame1_ = frame;
// Filter corners
frame1_->FilterCorners();
vector<Eigen::Vector3i> &corners = frame1_->GetCorners();
vector<int> &fcorners = frame1_->GetFilteredCorners();
pixels1_.clear();
vectors1_.clear();
for (auto it=fcorners.begin(); it != fcorners.end(); it++) {
index = *it;
corner = corners[index];
scale = (1 << corner(2));
feature = std::make_shared<Feature>(frame1_, Eigen::Vector2d(corner(0)*scale, corner(1)*scale), corner(2));
pixels1_.push_back(cv::Point2f(feature->GetPosition()[0], feature->GetPosition()[1]));
vectors1_.push_back(feature->GetVector());
}
cout << "[INFO] Homography Init: Detected " << pixels1_.size() << " features" << endl;
if (static_cast<int>(pixels1_.size()) < Config::MinInitCorners())
return false;
// Optical flow will search starting from pixels2_ values
pixels2_.insert(pixels2_.begin(), pixels1_.begin(), pixels1_.end());
return true;
}
bool HomographyInit::InitSecondFrame(const shared_ptr<Frame> &frame) {
Camera * camera;
vector<double> depths;
double depth, scale;
Eigen::Vector2d p1, p2;
int nfeatures, dist, margin;
shared_ptr<Feature> feature1, feature2;
bool fixed = false;
frame2_ = frame;
camera = frame2_->GetCamera();
nfeatures = 0;
if (!TrackSecondFrame())
return false;
if (!ComputeHomography())
return false;
if (triangulations_.empty())
return false;
// Set margin
if (Config::UseORB())
margin = 4+Config::ORBSize()/2;
else
margin = 1+Config::PatchSize()/2;
// Rescale map
for (unsigned int i=0; i < triangulations_.size(); ++i)
depths.push_back((triangulations_[i]).z());
depth = GetMedianVector(&depths);
scale = Config::MapScale()/depth;
// Save pose
frame2_->SetPose(se3_ * frame1_->GetPose());
Eigen::Vector3d translation = frame1_->GetWorldPosition() + scale*(frame2_->GetWorldPosition() - frame1_->GetWorldPosition());
frame2_->GetPose().SetTranslation(-frame2_->GetPose().GetRotation()*translation);
// Save features
for (vector<int>::iterator it=inliers_.begin(); it != inliers_.end(); it++) {
p1 << pixels1_[*it].x, pixels1_[*it].y;
p2 << pixels2_[*it].x, pixels2_[*it].y;
if (!camera->IsInsideImage(p1.cast<int>(), margin) || !camera->IsInsideImage(p2.cast<int>(), margin) || triangulations_[*it](2) < 0)
continue;
// Get depth
SE3 pose = frame2_->GetPose() * frame1_->GetPose().Inverse();
if (!GetDepthFromTriangulation(pose, vectors1_[*it], vectors2_[*it], &depth))
continue;
// Create new point
shared_ptr<Point> candidate = std::make_shared<Point>();
feature1 = std::make_shared<Feature>(frame1_, candidate, p1, vectors1_[*it], 0);
feature2 = std::make_shared<Feature>(frame2_, candidate, p2, vectors2_[*it], 0);
if (Config::UseORB()) {
vector<uchar> desc(32);
// Get descriptors
detector_.GetDescriptor(frame1_->GetPyramid()[0], p1.cast<int>(), &desc);
feature1->SetDescriptor(desc);
detector_.GetDescriptor(frame2_->GetPyramid()[0], p2.cast<int>(), &desc);
feature2->SetDescriptor(desc);
dist = detector_.Distance(feature1->GetDescriptor(), feature2->GetDescriptor());
if (dist > MIN_ORB_THRESHOLD)
continue;
}
// Link to first frame
candidate->InitCandidate(feature1, depth);
frame1_->AddFeature(feature1);
candidate->AddFeature(feature1);
// Link to second frame
frame2_->AddFeature(feature2);
candidate->AddFeature(feature2);
if (fixed) {
// Set fixed position
Eigen::Vector3d pos = candidate->GetPosition();
candidate->SetFixed();
candidate->SetPosition(pos);
} else {
map_->AddCandidate(candidate);
}
nfeatures++;
}
// Connect frames
frame1_->AddConnection(std::make_pair(frame2_, nfeatures));
frame2_->AddConnection(std::make_pair(frame1_, nfeatures));
cout << "[INFO] Initial Map created with " << nfeatures << " features" << endl;
return nfeatures >= Config::MinInitCorners();
}
bool HomographyInit::TrackSecondFrame() {
Camera * camera = frame2_->GetCamera();
vector<uchar> status;
vector<float> error;
vector<double> shifts;
Eigen::Vector2d pos;
Eigen::Vector3d pos3d;
double shift;
int size;
cv::TermCriteria criteria(cv::TermCriteria::COUNT+cv::TermCriteria::EPS, 30, 0.001);
cv::calcOpticalFlowPyrLK(frame1_->GetPyramid()[0], frame2_->GetPyramid()[0],
pixels1_, pixels2_, status, error,
cv::Size2i(30.0, 30.0), 4, criteria, cv::OPTFLOW_USE_INITIAL_FLOW);
vector<cv::Point2f>::iterator it_pixels1 = pixels1_.begin();
vector<cv::Point2f>::iterator it_pixels2 = pixels2_.begin();
vector<Eigen::Vector3d>::iterator it_vectors1 = vectors1_.begin();
vectors2_.clear();
for (vector<uchar>::iterator it_status=status.begin(); it_status != status.end(); it_status++) {
if (!(*it_status)) {
it_pixels1 = pixels1_.erase(it_pixels1);
it_pixels2 = pixels2_.erase(it_pixels2);
it_vectors1 = vectors1_.erase(it_vectors1);
continue;
}
// Save 3d vector
pos << it_pixels2->x, it_pixels2->y;
camera->Unproject(pos, &pos3d);
vectors2_.push_back(pos3d);
// Compute shift between features
shifts.push_back(Eigen::Vector2d(it_pixels1->x - it_pixels2->x, it_pixels1->y - it_pixels2->y).norm());
it_pixels1++;
it_pixels2++;
it_vectors1++;
}
if (shifts.empty())
return false;
shift = GetMedianVector(&shifts);
size = pixels1_.size();
cout << "[DEBUG] Homography Init: Tracked " << size << " features" << endl;
cout << "[DEBUG] Average shift between features is " << shift << "px " << endl;
return shift >= min_shift_ && size >= Config::MinInitCorners();
}
bool HomographyInit::ComputeHomography() {
Eigen::Vector2d pos1, pos2;
double focal_length = frame1_->GetCamera()->GetFx();
assert(vectors1_.size() == vectors2_.size());
vector<cv::Point2f> src_pts(vectors1_.size());
vector<cv::Point2f> dst_pts(vectors1_.size());
for (unsigned int i=0; i < vectors1_.size(); i++) {
pos1 = Camera::SimpleProject(vectors1_[i]);
pos2 = Camera::SimpleProject(vectors2_[i]);
src_pts[i] = cv::Point2f(pos1(0), pos1(1));
dst_pts[i] = cv::Point2f(pos2(0), pos2(1));
}
// Get homography
cv::Mat cvH = cv::findHomography(src_pts, dst_pts, CV_RANSAC, 2./focal_length);
bestH_(0, 0) = cvH.at<double>(0, 0);
bestH_(0, 1) = cvH.at<double>(0, 1);
bestH_(0, 2) = cvH.at<double>(0, 2);
bestH_(1, 0) = cvH.at<double>(1, 0);
bestH_(1, 1) = cvH.at<double>(1, 1);
bestH_(1, 2) = cvH.at<double>(1, 2);
bestH_(2, 0) = cvH.at<double>(2, 0);
bestH_(2, 1) = cvH.at<double>(2, 1);
bestH_(2, 2) = cvH.at<double>(2, 2);
// Decompose homography
if (!DecomposeHomography(bestH_))
return false;
CheckInliers(bestH_, src_pts, dst_pts);
ChooseBestDecomposition(src_pts, dst_pts);
// Save decomposition
assert(decompositions_.size() == 1);
se3_ = decompositions_[0].se3;
// Check matches with calculated decomposition
CheckDecompositionInliers();
if (static_cast<int>(inliers_.size()) < Config::MinInitCorners()) {
cerr << "[ERROR] Homography Init: Not enough inliers" << endl;
return false;
}
return true;
}
void HomographyInit::CheckInliers(const Eigen::Matrix3d &H, const vector<cv::Point2f> &src, const vector<cv::Point2f> &dst) {
int size;
inliers_.clear();
size = src.size();
for (int i=0; i < size; i++) {
Eigen::Vector3d projection = bestH_ * Camera::SimpleUnproject(Eigen::Vector2d(src[i].x, src[i].y));
Eigen::Vector2d projection2d = Camera::SimpleProject(projection);
Eigen::Vector2d v2Error = Eigen::Vector2d(dst[i].x, dst[i].y) - projection2d;
if (v2Error.norm() <= Config::InlierErrorThreshold())
inliers_.push_back(i);
}
}
void HomographyInit::CheckDecompositionInliers() {
int size;
Camera * camera;
Eigen::Vector3d xyz;
double err1, err2, ratio;
inliers_.clear();
triangulations_.clear();
size = vectors1_.size();
camera = frame2_->GetCamera();
ratio = camera->GetFx();
Eigen::Vector3d translation = se3_.GetTranslation();
Eigen::Matrix3d rotation = se3_.GetRotation();
// Triangulate each match and check reprojection error
// Note: Triangulation from frame2 point of view
for (int i=0; i < size; i++) {
xyz = Triangulate(se3_, vectors2_[i], vectors1_[i]);
triangulations_.push_back(xyz);
// Calc reprojection errors
err1 = ReprojectionError(camera, vectors2_[i], xyz)*ratio;
err2 = ReprojectionError(camera, rotation, translation, vectors1_[i], xyz)*ratio;
if (err1 <= Config::InlierErrorThreshold() && err2 <= Config::InlierErrorThreshold())
inliers_.push_back(i);
}
}
bool HomographyInit::DecomposeHomography(const Eigen::Matrix3d &H) {
decompositions_.clear();
Eigen::JacobiSVD<Eigen::Matrix3d> svd(H, Eigen::ComputeFullU | Eigen::ComputeFullV);
Eigen::Vector3d v3Diag = svd.singularValues();
double d1 = fabs(v3Diag(0)); // The paper suggests the square of these (e.g. the evalues of AAT)
double d2 = fabs(v3Diag(1)); // should be used, but this is wrong. c.f. Faugeras' book.
double d3 = fabs(v3Diag(2));
Eigen::Matrix3d U = svd.matrixU();
Eigen::Matrix3d V = svd.matrixV();
double s = U.determinant() * V.determinant();
double dPrime_PM = d2;
int nCase;
if (d1 != d2 && d2 != d3)
nCase = 1;
else if (d1 == d2 && d2 == d3)
nCase = 3;
else
nCase = 2;
if (nCase != 1) {
cerr << "[ERROR] Homography Init: This motion case is not implemented or is degenerate. Try again. " << endl;
return false;
}
double x1_PM;
double x2;
double x3_PM;
// All below deals with the case = 1 case.
// Case 1 implies (d1 != d3)
{ // Eq. 12
x1_PM = sqrt((d1 * d1 - d2 * d2) / (d1 * d1 - d3 * d3));
x2 = 0;
x3_PM = sqrt((d2 * d2 - d3 * d3) / (d1 * d1 - d3 * d3));
}
double e1[4] = { 1.0, -1.0, 1.0, -1.0 };
double e3[4] = { 1.0, 1.0, -1.0, -1.0 };
double e1_Eigen[4] = { 1.0, -1.0, 1.0, -1.0 };
double e3_Eigen[4] = { 1.0, 1.0, -1.0, -1.0 };
Eigen::Vector3d v3np;
HomographyDecomposition decomposition;
// Case 1, d' > 0:
decomposition.d = s * dPrime_PM;
for (int signs = 0; signs < 4; signs++) {
// Eq 13
decomposition.m3Rp = Eigen::Matrix3d::Identity();
double dSinTheta = (d1 - d3) * x1_PM * x3_PM * e1[signs] * e3[signs] / d2;
double dCosTheta = (d1 * x3_PM * x3_PM + d3 * x1_PM * x1_PM) / d2;
decomposition.m3Rp(0, 0) = dCosTheta;
decomposition.m3Rp(0, 2) = -dSinTheta;
decomposition.m3Rp(2, 0) = dSinTheta;
decomposition.m3Rp(2, 2) = dCosTheta;
// Eq 14
decomposition.v3Tp(0) = (d1 - d3) * x1_PM * e1_Eigen[signs];
decomposition.v3Tp(1) = 0.0;
decomposition.v3Tp(2) = (d1 - d3) * -x3_PM * e3_Eigen[signs];
v3np(0) = x1_PM * e1[signs];
v3np(1) = x2;
v3np(2) = x3_PM * e3[signs];
decomposition.v3n = V * v3np;
decompositions_.push_back(decomposition);
}
// Case 1, d' < 0:
decomposition.d = s * -dPrime_PM;
for (int signs = 0; signs < 4; signs++) {
// Eq 15
decomposition.m3Rp = -1 * Eigen::Matrix3d::Identity();
double dSinPhi = (d1 + d3) * x1_PM * x3_PM * e1[signs] * e3[signs] / d2;
double dCosPhi = (d3 * x1_PM * x1_PM - d1 * x3_PM * x3_PM) / d2;
decomposition.m3Rp(0, 0) = dCosPhi;
decomposition.m3Rp(0, 2) = dSinPhi;
decomposition.m3Rp(2, 0) = dSinPhi;
decomposition.m3Rp(2, 2) = -dCosPhi;
// Eq 16
decomposition.v3Tp(0) = (d1 + d3) * x1_PM * e1_Eigen[signs];
decomposition.v3Tp(1) = 0.0;
decomposition.v3Tp(2) = (d1 + d3) * x3_PM * e3_Eigen[signs];
v3np(0) = x1_PM * e1[signs];
v3np(1) = x2;
v3np(2) = x3_PM * e3[signs];
decomposition.v3n = V * v3np;
decompositions_.push_back(decomposition);
}
// While we have the SVD results calculated here, store the decomposition R and t results as well..
for (unsigned int i = 0; i < decompositions_.size(); i++) {
Eigen::Matrix3d rotation = s * U * decompositions_[i].m3Rp * V.transpose();
Eigen::Vector3d translation = U * decompositions_[i].v3Tp;
decompositions_[i].se3.SetRotation(rotation);
decompositions_[i].se3.SetTranslation(translation);
}
return true;
}
bool operator<(const HomographyDecomposition lhs, const HomographyDecomposition rhs) {
return lhs.score < rhs.score;
}
bool HomographyInit::ChooseBestDecomposition(const vector<cv::Point2f> &src, const vector<cv::Point2f> &dst) {
int size;
assert(decompositions_.size() == 8);
size = src.size();
// Select 4 decompositions
for (unsigned int i = 0; i < decompositions_.size(); i++) {
HomographyDecomposition &decom = decompositions_[i];
int nPositive = 0;
for (vector<int>::iterator it=inliers_.begin(); it != inliers_.end(); it++) {
Eigen::Vector2d v2(src[*it].x, src[*it].y);
double dVisibilityTest = (bestH_(2, 0) * v2(0) + bestH_(2, 1) * v2(1) + bestH_(2, 2)) / decom.d;
if (dVisibilityTest > 0.0)
nPositive++;
}
decom.score = -nPositive;
}
sort(decompositions_.begin(), decompositions_.end());
decompositions_.resize(4);
// Select 2 decompositions
for (unsigned int i = 0; i < decompositions_.size(); i++) {
HomographyDecomposition &decom = decompositions_[i];
int nPositive = 0;
for (vector<int>::iterator it=inliers_.begin(); it != inliers_.end(); it++) {
Eigen::Vector2d v2(src[*it].x, src[*it].y);
Eigen::Vector3d v3 = Camera::SimpleUnproject(v2);
double dVisibilityTest = v3.dot(decom.v3n) / decom.d;
if (dVisibilityTest > 0.0)
nPositive++;
}
decom.score = -nPositive;
}
sort(decompositions_.begin(), decompositions_.end());
decompositions_.resize(2);
// According to Faugeras and Lustman, ambiguity exists if the two scores are equal
// but in practive, better to look at the ratio!
double dRatio = static_cast<double>(decompositions_[1].score) / static_cast<double>(decompositions_[0].score);
if (dRatio < 0.9) { // no ambiguity!
decompositions_.erase(decompositions_.begin() + 1);
} else { // two-way ambiguity. Resolve by sampsonus score of all points.
double dErrorSquaredLimit = Config::InlierErrorThreshold() * Config::InlierErrorThreshold() * 4;
double adSampsonusScores[2];
for (int i = 0; i < 2; i++) {
SE3 & se3 = decompositions_[i].se3;
Eigen::Matrix3d m3Essential;
for (int j = 0; j < 3; j++) {
Eigen::Vector3d trans = se3.GetTranslation();
Eigen::Matrix3d rot = se3.GetRotation();
Eigen::Vector3d rot_T;
rot_T(0) = rot(0, j);
rot_T(1) = rot(1, j);
rot_T(2) = rot(2, j);
Eigen::Vector3d sol = trans.cross(rot_T);
m3Essential(0, j) = sol(0);
m3Essential(1, j) = sol(1);
m3Essential(2, j) = sol(2);
}
double dSumError = 0;
for (int m = 0; m < size; m++) {
double d = SampsonusError(m3Essential, m, src, dst);
if (d > dErrorSquaredLimit)
d = dErrorSquaredLimit;
dSumError += d;
}
adSampsonusScores[i] = dSumError;
}
if (adSampsonusScores[0] <= adSampsonusScores[1])
decompositions_.erase(decompositions_.begin() + 1);
else
decompositions_.erase(decompositions_.begin());
}
return true;
}
double HomographyInit::SampsonusError(const Eigen::Matrix3d &m3Essential, int i,
const vector<cv::Point2f> &src, const vector<cv::Point2f> &dst) {
Eigen::Vector2d v2(src[i].x, src[i].y);
Eigen::Vector2d v2Dash(dst[i].x, dst[i].y);
Eigen::Vector3d v3Dash = Camera::SimpleUnproject(v2Dash);
Eigen::Vector3d v3 = Camera::SimpleUnproject(v2);
Eigen::Vector3d aux = (m3Essential * v3);
double dError = aux.dot(v3Dash);
Eigen::Vector3d fv3 = m3Essential * v3;
Eigen::Vector3d fTv3Dash = m3Essential.transpose() * v3Dash;
Eigen::Vector2d fv3Slice;
fv3Slice(0) = fv3(0);
fv3Slice(1) = fv3(1);
Eigen::Vector2d fTv3DashSlice;
fTv3DashSlice(0) = fTv3Dash(0);
fTv3DashSlice(1) = fTv3Dash(1);
return (dError * dError / (fv3Slice.dot(fv3Slice) + fTv3DashSlice.dot(fTv3DashSlice)));
}
double HomographyInit::ReprojectionError(Camera * camera, const Eigen::Vector3d vector, const Eigen::Vector3d p3d) {
Eigen::Vector2d perror = Camera::SimpleProject(vector) - Camera::SimpleProject(p3d);
return perror.norm();
}
double HomographyInit::ReprojectionError(Camera * camera, const Eigen::Matrix3d &R, const Eigen::Vector3d &T,
const Eigen::Vector3d vector, const Eigen::Vector3d p3d) {
Eigen::Vector3d pcamera = R.transpose()*(p3d - T);
Eigen::Vector2d perror = Camera::SimpleProject(vector) - Camera::SimpleProject(pcamera);
return perror.norm();
}
} // namespace sdvl