forked from rougier/delayed-neural-field
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDNF.py
263 lines (232 loc) · 8.63 KB
/
DNF.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Dymamic Neural Field with finite transmission speed
# Copyright (C) 2010 Nicolas P. Rougier
#
# This program is free software: you can redistribute it and/or modify it under
# the terms of the GNU General Public License as published by the Free Software
# Foundation, either version 3 of the License, or (at your option) any later
# version.
#
# This program is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
# details.
#
# You should have received a copy of the GNU General Public License along with
# this program. If not, see <http://www.gnu.org/licenses/>.
#
# -----------------------------------------------------------------------------
#
# Dependencies:
#
# python > 2.6 (required): http://www.python.org
# numpy (required): http://numpy.scipy.org
# matplotlib (optional): http://matplotlib.sourceforge.net
#
# -----------------------------------------------------------------------------
# Contributors:
#
# Nicolas P. Rougier
# Axel Hutt
# Cyril Noël
#
# Contact Information:
#
# Axel Hutt / Nicolas P. Rougier
# INRIA Nancy - Grand Est research center
# CS 20101
# 54603 Villers les Nancy Cedex France
#
# References:
#
# Axel Hutt and Nicolas P. Rougier
# "Activity spread and breathers induced by finite transmission
# speeds in two-dimensional neural fields"
# Physical Review Letter E, 2010, to appear.
#
# -----------------------------------------------------------------------------
'''
Numerical integration of dynamic neural fields with finite propagation speed
This script implements the numerical integration of a dynamic neural fields
with finite (or infinite) propagation speed:
∂V(x,t) ⌠ |x-y|
τ ------- = I(x,t) - V(x,t) + ⎮ K(|x-y|) S( V(y, t - -----) ) d²y
∂t ⌡Ω c
where # V(x,t) is the potential of a neural population at position x and time t
# Ω is the domain of integration of size lxl (mm²)
# K(x) is a neighborhood function from [0,√2l] -> ℝ
# S(x) is the firing rate of a single neuron from ℝ⁺ -> ℝ
# c is the velocity of an action potential (mm/s)
# τ is the temporal decay of the synapse
# I(x,t) is the input at position x and time t
Numerical parameters:
# n : space discretisation
# dt : temporal discretisation (s)
# t : duration of the simulation (s)
The integration is made over the finite 2d domain [-l/2,+l/2]x[-l/2,+l/2]
discretized into n x n elements considered as a toric surface, during a period
of t seconds.
'''
import sys
import numpy as np
import matplotlib.pyplot as plt
from numpy.fft import fft2,ifft2,fftshift,ifftshift
def disc(shape=(256,256), center=None, radius = 64):
''' Generate a numpy array containing a disc.
:Parameters:
`shape` : (int,int)
Shape of the output array
`center`: (int,int)
Disc center
`radius`: int
Disc radius (if radius = 0 -> disc is 1 point)
'''
if not center:
center = (shape[0]//2,shape[1]//2)
def distance(x,y):
return np.sqrt((x-center[0])**2+(y-center[1])**2)
D = np.fromfunction(distance,shape)
return np.where(D<=radius,True,False).astype(np.float32)
def peel(Z, center=None, r=8):
''' Peel an array Z into several 'onion rings' of width r.
:Parameters:
`Z`: numpy.ndarray
Array to be peeled
`center`: (int,int)
Center of the 'onion'
`r` : int
ring radius
:Returns:
`out` : [numpy.ndarray,...]
List of n Z-onion rings with n ≥ 1
'''
if r <= 0 :
raise exceptions.ValueError('Radius must be > 0')
if not center:
center = (Z.shape[0]//2,Z.shape[1]//2)
if (center[0] >= Z.shape[0] or center[1] >= Z.shape[1] or \
center[0] < 0 or center[1] < 0 ) :
raise exceptions.ValueError('Center must be in the matrix')
# Compute the maximum diameter to get number of rings
dx = float(max(Z.shape[0]-center[0],center[0]))
dy = float(max(Z.shape[1]-center[1],center[1]))
radius = np.sqrt(dx**2+dy**2)
# Generate 1+int(d/r) rings
L = []
K = Z.copy()
n = 1+int(radius/r)
for i in range(n):
r1 = (i )*r/2
r2 = (i+1)*r/2
K = (disc(Z.shape,center,2*r2) - disc(Z.shape,center,2*r1))*Z
L.append(K)
L[0][center[0],center[1]] = Z[center[0],center[1]]
return L
def gaussian(x, sigma=1.0):
''' Gaussian function of the form exp(-x²/σ²)/(π.σ²) '''
return 1.0/(sigma**2*np.pi)*np.exp(-x**2/(sigma**2))
def g(x, sigma=1.0):
''' Gaussian function of the form exp(-x²/2σ²)) '''
return np.exp(-0.5*(x/sigma)**2)
def sigmoid(x):
''' Sigmoid function of the form 1/(1+exp(-x)) '''
return 1.0/(1+np.exp(-x))
# -----------------------------------------------------------------------------
if __name__ == '__main__':
# Parameters
# ----------
l = 10.00 # size of the field (mm)
n = 256 # space discretization
c = 10.0 # velocity of an action potential (m/s)
t = 1.450 # duration of simulation (in seconds)
dt = 0.010 # temporal discretisation (in seconds)
tau = 1.0 # temporal decay of the synapse
# Input
I = 2
I0 = 1.0
sigma_i = 0.2
x_inf, x_sup, cx, dx = -l/2, +l/2, 0, l/float(n)
y_inf, y_sup, cy, dy = -l/2, +l/2, 0, l/float(n)
nx, ny = (x_sup-x_inf)/dx, (y_sup-y_inf)/dy
X,Y = np.meshgrid(np.arange(x_inf,x_sup,dx), np.arange(y_inf,y_sup,dy))
D = np.sqrt(X**2+Y**2)
I_ext = I0*gaussian(D,sigma_i)
# Initial state (t ≤ 0)
V0 = 2.00083
V = np.ones((n,n))*V0
# Neighborhood function
def K(X,Y):
phi_0 = 0*np.pi/3.0
phi_1 = 1*np.pi/3.0
phi_2 = 2*np.pi/3.0
K0 = 0.1
k_c = 10*np.pi/l
sigma = 10
return K0*(np.cos(k_c*(X*np.cos(phi_0)+Y*np.sin(phi_0))) + \
np.cos(k_c*(X*np.cos(phi_1)+Y*np.sin(phi_1))) + \
np.cos(k_c*(X*np.cos(phi_2)+Y*np.sin(phi_2)))) * \
np.exp(-np.sqrt(X*X+Y*Y)/sigma)
# Firing rate function
def S(X):
return 2.0/(1.0+np.exp(-5.5*(X-3)))
# Generate kernel rings
x_inf, x_sup, cx, dx = -l/2, +l/2, 0, l/float(n)
y_inf, y_sup, cy, dy = -l/2, +l/2, 0, l/float(n)
nx, ny = (x_sup-x_inf)/dx, (y_sup-y_inf)/dy
X,Y = np.meshgrid(np.arange(x_inf,x_sup,dx), np.arange(y_inf,y_sup,dy))
K_ = K(X,Y)*dx*dy
r = max(1,c*dt*n/l)
Ki = peel(K_, center=(n//2,n//2), r=r)
nrings = len(Ki) # Number of rings
# Precompute Fourier transform for each kernel ring since they're
# only used in the Fourier domain
Ki = [fft2(fftshift(Ki[i])) for i in range(nrings)]
# Print parameters
print '---------------------'
print 'Simulation parameters'
print '---------------------'
print 'Size of the field : %.1fmm×%.1fmm' % (l,l)
print 'Action potential velocity: %.1fmm/s' % c
print 'Tau : %.2f' % tau
print 'Space discretisation : %d×%d' % (n,n)
print 'Time discretisation : %.2f ms' % (dt)
print 'Simulation duration : %.2f s' % t
print 'Number of rings : %d' % nrings
print 'K sum : %f' % K_.sum()
# Initialisation
# ---------------
# Initialisation of past S(V) values (from t=-Tmax to t=0, where Tmax =
# nrings*dt) Since we're working in the Fourier domain, past values are
# directly stored using their Fourier transform
U = [fft2(S(V)),]*nrings
t = 1.45
V_schedule = [0.5, 0.75, 1.0, 1.25]
V_copy = []
# Run simulation
# --------------
for i in range(0,int(t/dt)):
print 'Time %.3fms:' % (i*dt)
print ' V_min = %.8f' % V.min()
print ' V_max = %.8f' % V.max()
L = Ki[0]*U[0]
for j in range(1,nrings):
L += Ki[j]*U[j]
L = ifft2(L).real
if (i < 60): dV = dt/tau*(-V+L+I)
else: dV = dt/tau*(-V+L+I+I_ext)
V += dV
U = [fft2(S(V)),] + U[:-1]
if (i*dt in V_schedule):
V_copy.append(V.copy())
n = len(V_copy)
fig = plt.figure(figsize=(n*4.5,4))
for i in range(n):
plt.subplot(1,n,i+1)
plt.imshow(V_copy[i], vmin=2.00, vmax=2.025, interpolation='bicubic')
plt.yticks([])
plt.xticks([])
plt.title("t=%.2fms" % V_schedule[i])
fig.savefig('figure-1.pdf')
plt.show()