-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprod_plot.R
121 lines (82 loc) · 3.4 KB
/
prod_plot.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
library(targets)
library(profvis)
library(terra)
library(dplyr)
library(purrr)
library(ggplot2)
library(tidyterra)
library(patchwork)
## PEI ##
prod_data <- pe_model_pred
census <- tar_read(raw_geom_data_pe)
time_of_interest <- as.Date("2020-01-01") # replace with your desired date
rastc <- unwrap(tar_read(cmip5_high_temp))
prod_subset <- prod_data %>%
filter(Date == time_of_interest) %>%
mutate(GeoUID = as.character(GeoUID)) # Convert GeoUID to character
# Join the spatial data with the temperature data
census_sf <- left_join(census, prod_subset, by = "GeoUID")
lim = range(prod_subset$mean_temp_high, na.rm = T)
# Plot
ggplot() +
geom_sf(data = census_sf, aes(fill = mean_temp_high), color ="black") +
scale_fill_gradient(low = "blue", high = "red", limits = lim) +
theme_minimal() +
labs(fill = "Mean Temp", title = paste("Mean Temp at", time_of_interest)) +
theme_void()
#' Average temp increase between 2005 - 2020 (plot)
#' Take diff of the climate variables between these years and plot
prod_subset_05 <- prod_data %>%
filter(Date == as.Date("2005-01-01")) %>%
mutate(GeoUID = as.character(GeoUID)) # Convert GeoUID to character
prod_subset_20 <- prod_data %>%
filter(Date == as.Date("2020-01-01")) %>%
mutate(GeoUID = as.character(GeoUID)) # Convert GeoUID to character
inc_mth_20_05 <- (prod_subset_20$mean_temp_high - prod_subset_05$mean_temp_high)/abs(prod_subset_05$mean_temp_high)
prod_subset = cbind(prod_subset, inc_mth_20_05)
# Join the spatial data with the temperature data
census_sf <- left_join(census, prod_subset, by = "GeoUID")
lim = range(census_sf$inc_mth_20_05, na.rm = T)
# Plot
ggplot() +
geom_sf(data = census_sf, aes(fill = inc_mth_20_05), color ="black") +
scale_fill_gradient(low = "blue", high = "red", limits = lim) +
theme_minimal() +
labs(fill = "Mean Temp", title = "Relative Mean Temp Increase from 2005 to 2020") +
theme_void()
## ONTARIO ##
prod_data <- on_train
census <- tar_read(raw_geom_data_on)
time_of_interest <- as.Date("2005-12-01") # replace with your desired date
rastc <- unwrap(tar_read(cmip5_high_temp))
prod_subset <- prod_data %>%
filter(Date == time_of_interest) %>%
mutate(GeoUID = as.character(GeoUID)) # Convert GeoUID to character
# Join the spatial data with the temperature data
census_sf <- left_join(census, prod_subset, by = "GeoUID")
lim = range(prod_subset$mean_temp_high, na.rm = T)
# Plot
ggplot() +
geom_sf(data = census_sf, aes(fill = mean_temp_high), color ="black") +
scale_fill_gradient(low = "blue", high = "red", limits = lim) +
theme_minimal() +
labs(fill = "Mean Temp", title = paste("Mean Temp at", time_of_interest)) +
theme_void()
## ALBERTA ##
prod_data <- tar_read(ab_ts)
census <- tar_read(raw_geom_data_ab)
time_of_interest <- as.Date("2005-12-01") # replace with your desired date
rastc <- unwrap(tar_read(cmip5_high_temp))
prod_subset <- prod_data %>%
filter(Date == time_of_interest) %>%
mutate(GeoUID = as.character(GeoUID)) # Convert GeoUID to character
# Join the spatial data with the temperature data
census_sf <- left_join(census, prod_subset, by = "GeoUID")
lim = range(prod_subset$mean_temp_high, na.rm = T)
# Plot
ggplot() +
geom_sf(data = census_sf, aes(fill = as.numeric(mean_temp_high)), color ="black") +
scale_fill_gradient(low = "blue", high = "red", limits = lim) +
theme_minimal() +
labs(fill = "Mean Temp", title = paste("Mean Temp at", time_of_interest)) +
theme_void()