-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbenchmark.cpp
133 lines (100 loc) · 3.74 KB
/
benchmark.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
#include "kdtree.h"
#include <scoped_timer/scoped_timer.hpp>
#include <Corrade/Containers/GrowableArray.h>
#include <nanoflann.hpp>
#include <random>
using namespace Corrade;
using namespace Magnum;
constexpr int n = 1'000'000;
constexpr int m = 10000;
struct PointCloud
{
using coord_t = float;
using Point = Vector3;
Containers::Array<Point> pts;
};
template <typename Derived>
struct Adapter
{
using coord_t = typename Derived::coord_t;
const Derived &obj;
Adapter(const Derived &obj_) : obj(obj_) { }
inline const Derived& derived() const { return obj; }
// Must return the number of data points
inline size_t kdtree_get_point_count() const { return derived().pts.size(); }
// Returns the dim'th component of the idx'th point in the class:
// Since this is inlined and the "dim" argument is typically an immediate value, the
// "if/else's" are actually solved at compile time.
inline coord_t kdtree_get_pt(const size_t idx, const size_t dim) const
{
if (dim == 0) return derived().pts[idx].x();
else if (dim == 1) return derived().pts[idx].y();
else return derived().pts[idx].z();
}
// Optional bounding-box computation: return false to default to a standard bbox computation loop.
// Return true if the BBOX was already computed by the class and returned in "bb" so it can be avoided to redo it again.
// Look at bb.size() to find out the expected dimensionality (e.g. 2 or 3 for point clouds)
template <class BBOX>
bool kdtree_get_bbox(BBOX& /*bb*/) const { return false; }
};
// construct a kd-tree index:
using adapter_t = Adapter<PointCloud>;
using kd_tree_t = nanoflann::KDTreeSingleIndexAdaptor<
nanoflann::L2_Simple_Adaptor<float, adapter_t>,
adapter_t,
3 /* dim */
>;
template<class T>
CORRADE_ALWAYS_INLINE void doNotOptimize(T const& value) {
asm volatile("" : : "r,m"(value) : "memory");
}
int main() {
Containers::Array<Vector3> queries(Containers::NoInit, m);
PointCloud cloud;
Containers::arrayResize(cloud.pts, Containers::NoInit, n);
std::default_random_engine engine(0);
std::uniform_real_distribution<float> dist(-1,1);
for (auto& p : cloud.pts){
p = Vector3(dist(engine), dist(engine), dist(engine));
}
for (auto& q : queries){
q = Vector3(dist(engine), dist(engine), dist(engine));
}
{
for (uint32_t i = 0; i < 10; ++i) {
ScopedTimer t{"KDTree Construction", true};
KDTree tree(cloud.pts);
doNotOptimize(tree);
}
}
{
for (uint32_t i = 0; i < 10; ++i) {
ScopedTimer t{"nano flann Construction", true};
adapter_t adapter{cloud};
kd_tree_t index(3 /*dim*/, adapter, nanoflann::KDTreeSingleIndexAdaptorParams(10 /* max leaf */) );
index.buildIndex();
doNotOptimize(index);
}
}
adapter_t adapter{cloud};
kd_tree_t index(3 /*dim*/, adapter, nanoflann::KDTreeSingleIndexAdaptorParams(10 /* max leaf */) );
index.buildIndex();
KDTree tree(cloud.pts);
for (auto const& q : queries) {
ScopedTimer t{"KDTree Query"};
auto result = tree.nearestNeighbor(q);
doNotOptimize(result);
}
for(auto const& q : queries){
ScopedTimer t{"nano flann Query"};
const size_t num_results = 1;
size_t ret_index;
float out_dist_sqr;
nanoflann::KNNResultSet<float> resultSet(num_results);
resultSet.init(&ret_index, &out_dist_sqr);
index.findNeighbors(resultSet, q.data(), nanoflann::SearchParams{});
doNotOptimize(resultSet);
}
ScopedTimer::printStatistics();
return 0;
}