forked from lpq29743/IAN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
145 lines (127 loc) · 6.15 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import os
import ast
import spacy
import numpy as np
from errno import ENOENT
from collections import Counter
nlp = spacy.load("en")
def get_data_info(train_fname, test_fname, save_fname, pre_processed):
word2id, max_aspect_len, max_context_len = {}, 0, 0
word2id['<pad>'] = 0
if pre_processed:
if not os.path.isfile(save_fname):
raise IOError(ENOENT, 'Not a file', save_fname)
with open(save_fname, 'r') as f:
for line in f:
content = line.strip().split()
if len(content) == 3:
max_aspect_len = int(content[1])
max_context_len = int(content[2])
else:
word2id[content[0]] = int(content[1])
else:
if not os.path.isfile(train_fname):
raise IOError(ENOENT, 'Not a file', train_fname)
if not os.path.isfile(test_fname):
raise IOError(ENOENT, 'Not a file', test_fname)
words = []
lines = open(train_fname, 'r').readlines()
for i in range(0, len(lines), 3):
sptoks = nlp(lines[i].strip())
words.extend([sp.text.lower() for sp in sptoks])
if len(sptoks) - 1 > max_context_len:
max_context_len = len(sptoks) - 1
sptoks = nlp(lines[i + 1].strip())
if len(sptoks) > max_aspect_len:
max_aspect_len = len(sptoks)
word_count = Counter(words).most_common()
for word, _ in word_count:
if word not in word2id and ' ' not in word and '\n' not in word and 'aspect_term' not in word:
word2id[word] = len(word2id)
lines = open(test_fname, 'r').readlines()
for i in range(0, len(lines), 3):
sptoks = nlp(lines[i].strip())
words.extend([sp.text.lower() for sp in sptoks])
if len(sptoks) - 1 > max_context_len:
max_context_len = len(sptoks) - 1
sptoks = nlp(lines[i + 1].strip())
if len(sptoks) > max_aspect_len:
max_aspect_len = len(sptoks)
word_count = Counter(words).most_common()
for word, _ in word_count:
if word not in word2id and ' ' not in word and '\n' not in word and 'aspect_term' not in word:
word2id[word] = len(word2id)
with open(save_fname, 'w') as f:
f.write('length %s %s\n' % (max_aspect_len, max_context_len))
for key, value in word2id.items():
f.write('%s %s\n' % (key, value))
print('There are %s words in the dataset, the max length of aspect is %s, and the max length of context is %s' % (len(word2id), max_aspect_len, max_context_len))
return word2id, max_aspect_len, max_context_len
def read_data(fname, word2id, max_aspect_len, max_context_len, save_fname, pre_processed):
aspects, contexts, labels, aspect_lens, context_lens = list(), list(), list(), list(), list()
if pre_processed:
if not os.path.isfile(save_fname):
raise IOError(ENOENT, 'Not a file', save_fname)
lines = open(save_fname, 'r').readlines()
for i in range(0, len(lines), 5):
aspects.append(ast.literal_eval(lines[i]))
contexts.append(ast.literal_eval(lines[i + 1]))
labels.append(ast.literal_eval(lines[i + 2]))
aspect_lens.append(ast.literal_eval(lines[i + 3]))
context_lens.append(ast.literal_eval(lines[i + 4]))
else:
if not os.path.isfile(fname):
raise IOError(ENOENT, 'Not a file', fname)
lines = open(fname, 'r').readlines()
with open(save_fname, 'w') as f:
for i in range(0, len(lines), 3):
polarity = lines[i + 2].split()[0]
if polarity == 'conflict':
continue
context_sptoks = nlp(lines[i].strip())
context = []
for sptok in context_sptoks:
if sptok.text.lower() in word2id:
context.append(word2id[sptok.text.lower()])
aspect_sptoks = nlp(lines[i + 1].strip())
aspect = []
for aspect_sptok in aspect_sptoks:
if aspect_sptok.text.lower() in word2id:
aspect.append(word2id[aspect_sptok.text.lower()])
aspects.append(aspect + [0] * (max_aspect_len - len(aspect)))
f.write("%s\n" % aspects[-1])
contexts.append(context + [0] * (max_context_len - len(context)))
f.write("%s\n" % contexts[-1])
if polarity == 'negative':
labels.append([1, 0, 0])
elif polarity == 'neutral':
labels.append([0, 1, 0])
elif polarity == 'positive':
labels.append([0, 0, 1])
f.write("%s\n" % labels[-1])
aspect_lens.append(len(aspect_sptoks))
f.write("%s\n" % aspect_lens[-1])
context_lens.append(len(context_sptoks) - 1)
f.write("%s\n" % context_lens[-1])
print("Read %s examples from %s" % (len(aspects), fname))
return np.asarray(aspects), np.asarray(contexts), np.asarray(labels), np.asarray(aspect_lens), np.asarray(context_lens)
def load_word_embeddings(fname, embedding_dim, word2id):
if not os.path.isfile(fname):
raise IOError(ENOENT, 'Not a file', fname)
word2vec = np.random.uniform(-0.01, 0.01, [len(word2id), embedding_dim])
oov = len(word2id)
with open(fname, 'rb') as f:
for line in f:
line = line.decode('utf-8')
content = line.strip().split()
if content[0] in word2id:
word2vec[word2id[content[0]]] = np.array(list(map(float, content[1:])))
oov = oov - 1
print('There are %s words in vocabulary and %s words out of vocabulary' % (len(word2id) - oov, oov))
return word2vec
def get_batch_index(length, batch_size, is_shuffle=True):
index = list(range(length))
if is_shuffle:
np.random.shuffle(index)
for i in range(int(length / batch_size) + (1 if length % batch_size else 0)):
yield index[i * batch_size:(i + 1) * batch_size]