-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathc game theory.cpp
80 lines (64 loc) · 2.31 KB
/
c game theory.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
#include <Rcpp.h>
using namespace Rcpp;
// This is a simple example of exporting a C++ function to R. You can
// source this function into an R session using the Rcpp::sourceCpp
// function (or via the Source button on the editor toolbar). Learn
// more about Rcpp at:
//
// http://www.rcpp.org/
// http://adv-r.had.co.nz/Rcpp.html
// http://gallery.rcpp.org/
//
// [[Rcpp::export]]
NumericVector timesTwo(NumericVector x) {
return x * 2;
}
// You can include R code blocks in C++ files processed with sourceCpp
// (useful for testing and development). The R code will be automatically
// run after the compilation.
//
/*** R
timesTwo(42)
*/
// C++ program to find out maximum value from a
// given sequence of coins
// https://www.geeksforgeeks.org/optimal-strategy-for-a-game-dp-31/?ref=rp
#include <bits/stdc++.h>
using namespace std;
// Returns optimal value possible that a player can
// collect from an array of coins of size n. Note
// than n must be even
int optimalStrategyOfGame(int* arr, int n)
{
// Create a table to store solutions of subproblems
int table[n][n];
// Fill table using above recursive formula. Note
// that the table is filled in diagonal fashion (similar
// to http://goo.gl/PQqoS), from diagonal elements to
// table[0][n-1] which is the result.
for (int gap = 0; gap < n; ++gap) {
for (int i = 0, j = gap; j < n; ++i, ++j) {
// Here x is value of F(i+2, j), y is F(i+1, j-1) and
// z is F(i, j-2) in above recursive formula
int x = ((i + 2) <= j) ? table[i + 2][j] : 0;
int y = ((i + 1) <= (j - 1)) ? table[i + 1][j - 1] : 0;
int z = (i <= (j - 2)) ? table[i][j - 2] : 0;
table[i][j] = max(arr[i] + min(x, y), arr[j] + min(y, z));
}
}
return table[0][n - 1];
}
// Driver program to test above function
int main()
{
int arr1[] = { 8, 15, 3, 7 };
int n = sizeof(arr1) / sizeof(arr1[0]);
printf("%d\n", optimalStrategyOfGame(arr1, n));
int arr2[] = { 2, 2, 2, 2 };
n = sizeof(arr2) / sizeof(arr2[0]);
printf("%d\n", optimalStrategyOfGame(arr2, n));
int arr3[] = { 20, 30, 2, 2, 2, 10 };
n = sizeof(arr3) / sizeof(arr3[0]);
printf("%d\n", optimalStrategyOfGame(arr3, n));
return 0;
}