-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathGame Theory4.R
72 lines (55 loc) · 2.17 KB
/
Game Theory4.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
#############################################################
# This is the starting script to 'Spatial cooperation games'
#############################################################
https://tb.ethz.ch/education/learningmaterials/modelingcourse/level-2-modules/SCG.html
# Implements a non-spatial PD
### set parameters
n <- 1000 # population size
b <- 2 # benefit
c <- 1 # cost
num_gen <- 50 # number of generations
initfreq_coop <- 0.5 # initial frequency of cooperators
# calculate the number of competitions
num_comps <- num_gen * n
### pay-off matrix, i.e. what player 1 gets when playing against 2:
#
# player 2
# defect cooperate
# player defect P T
# 1 cooperate S R
#
# Prisoner's dilemma (PD): ( R, T, S, P ) = ( b-c, b, -c, 0 )
R <- b-c
T <- b
S <- -c
P <- 0
# calculate the maximum payoff difference, alpha
alpha = T-S
# construct pay-off matrix
rewards <- matrix(c(P, T, S, R), nrow=2, ncol=2, byrow=TRUE)
### Initialize population and result vectors
pop <- rbinom(n,1,initfreq_coop) # generate initial population vector (1's correspond to cooperators,
# 0's correspond to defectors)
# Because population size is constant, it will be sufficient to record
# the frequency of just one type (e.g. cooperators)
stats <- numeric(num_comps+1)
stats[1] <- sum(pop)/n
### Simulate
# conduct competitions
for (i in 1:num_comps+1) {
# pick four organisms for the comparisons
x <- sample(n,4)
# compete organisms and calculate their payoffs
P1 <- rewards[pop[x[1]]+1, pop[x[2]]+1]
P2 <- rewards[pop[x[3]]+1, pop[x[4]]+1]
# calculate the probability of replacement
w <- max(0,(P2-P1)/alpha)
# now replace the first organism, if necessary
if (w > runif(1)) {pop[x[1]] <- pop[x[3]]}
# record the frequency of cooperators
stats[i] <- sum(pop)/n
}
### Plot proportion of cooperators in the population
# use time scale of competition interactions
time <- 0:num_comps
plot(time,stats, type="l",lwd=2, xlab="time (number of competitions)",ylab="Frequency of cooperators")