-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_model.py
586 lines (484 loc) · 23.4 KB
/
test_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
'''
Script that tests a trained models on its training dataset. It does the same
testing routine as the one in the overall utilities_models_tf.py script.
It saves
¤ the information about the test for easy later plotting
¤ ROC (per-class and overall using micro and macro average)
¤ PP curve (per-class and overall using micro and macro average)
¤ summary of performance for easy read of the final scores
Steps
1 - get paths and models to test
2 - load testing dataset
3 - get predictions using the test function in the utilities_models_tf.py
4 - plot and save confusion matrix
5 - plot and save ROC curve
6 - save detailed info of the testing and summary
'''
import os
import sys
import cv2
import glob
import json
import time
import pickle
import random
import pathlib
import argparse
import importlib
import numpy as np
from datetime import datetime
from collections import OrderedDict
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1.inset_locator import zoomed_inset_axes
from mpl_toolkits.axes_grid1.inset_locator import mark_inset
import tensorflow as tf
from tensorflow.keras.utils import to_categorical
from tensorflow.keras.models import load_model
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' # or any {'0', '1', '2'}
# local imports
import utilities
import utilities_models_tf
## 1 - get models information and additional files
parser = argparse.ArgumentParser(description='Script that prints a summary of the model perfomance.')
parser.add_argument('-m','--model_path' ,required=True, help='Specify the folder where the trained model is located')
parser.add_argument('-d','--dataset_path' ,required=False, help='Specify where the dataset is located', default=False)
parser.add_argument('-mv','--model_version' ,required=False, help='Specify if to run the training on the best model (best) or the last (last)', default="best")
args = parser.parse_args()
model_path = args.model_path
dataset_path = args.dataset_path
model_version = args.model_version
# # # DEBUG
# model_path = '/flush/iulta54/Research/P3_OCT_SPLIT_PROPERLY_YOUR_DATA/trained_models/LightOCT_per_image_split_5_folds_rkf_10_lr0.0001_batch64_AIIMS_rls_True'
# dataset_path = "/flush/iulta54/Research/Data/OCT/AIIMS_Dataset/original"
# model_version = "best"
title="Testing script"
print(f'\n{"-"*len(title)}')
print(f'{title}')
print(f'{"-"*len(title)}\n')
# check forlders
if not os.path.isdir(model_path):
raise ValueError(f'Model not found. Given {model_path}')
else:
# check that the configuration file is in place
if not os.path.isfile(os.path.join(model_path,'config.json')):
raise ValueError(f'Configuration file not found for the given model. Check that the model was configured and trained. Given {os.path.join(model_path,"config.json")}')
else:
print("Model and config file found.")
# check that the model_version setting is a correct one (best, last, ensamble-not jet implemented)
if not any([model_version==s for s in ["best", "last", "ensamble"]]):
raise ValueError(f'The given model version for the testing is unknown. Given {model_version}, expected best, last or ensamble')
print(f'Working on model {os.path.basename(model_path)}')
print(f'Model configuration set for testing: {model_version}')
## 2 - load testing dataset
importlib.reload(utilities)
# load configuration file
with open(os.path.join(model_path,'config.json')) as json_file:
config = json.load(json_file)
config['label_description'] = config['unique_labels']
if dataset_path is False:
dataset_path = config['dataset_folder']
# check if dataset folder
if not os.path.isdir(dataset_path):
raise ValueError(f'Dataset path not found. Given {dataset_path}')
else:
print('Dataset path found.')
# take one testing
# make sure that the files point to this system dataset
# fix names based on the given dataset path
if any([config['dataset_type'] == 'retinal', config['dataset_type'] == 'Kermany']):
if config['dataset_split_strategy'] == 'original':
idx = 4
else:
idx = 3
elif config['dataset_type'] == 'AIIMS':
idx = 4
elif config['dataset_type'] == 'Srinivas':
idx = 5
test_img= []
# build file names to point to this given dataset
for f in config['test']:
aus = [pathlib.Path(f).parts[-i] for i in reversed(range(idx))][0:-1]
aus.insert(0, dataset_path)
test_img.append(os.path.join(*aus))
# create generator based on model specifications and dataset
if any([config['dataset_type'] == 'retinal', config['dataset_type'] == 'Kermany']):
data_gen = utilities.Kermany_data_gen
elif config['dataset_type'] == 'AIIMS':
data_gen = utilities.AIIMS_data_gen
elif config['dataset_type'] == 'Srinivas':
data_gen = utilities.Srinivas_data_gen
# test_dataset = data_gen(test_img,
# unique_labels=config['unique_labels'],
# batch_size=16,
# training=False,
# channels=config['n_channels'],
# input_size=config['input_size'],
# random_label_experiment=config['random_label_experiment'],
# random_label_experiment_seed=291209)
test_dataset = data_gen(test_img,
unique_labels=config['unique_labels'],
batch_size=16,
training=False,
channels=config['n_channels'],
input_size=config['input_size'],
random_label_experiment=False,
random_label_experiment_seed=291209)
## perform testing for each fold the model was trained on
importlib.reload(utilities_models_tf)
test_fold_summary = {}
folds = glob.glob(os.path.join(model_path,"fold_*"))
# get the right model based on the model_version_specification
if model_version=="best":
model_name_version = "model.tf"
elif model_version=="last":
model_name_version = "last_model.tf"
for idx, f in enumerate(folds):
print(f'Working on fold {idx+1}/{len(folds)}')
# load model
if os.path.exists(os.path.join(f, model_name_version)):
model = tf.keras.models.load_model(os.path.join(f, model_name_version), compile=False)
else:
raise Exception('Model not found')
test_gt, test_prediction, test_time = utilities_models_tf.test_independent(model, config, test_dataset)
test_fold_summary[idx]={
'ground_truth':np.argmax(test_gt.numpy(), axis=-1),
'prediction':test_prediction.numpy(),
'test_time':float(test_time)
}
## save and plot
from collections import OrderedDict
from mpl_toolkits.axes_grid1.inset_locator import zoomed_inset_axes
from mpl_toolkits.axes_grid1.inset_locator import mark_inset
'''
Saving overall cross validation test results and images:
- Confisuion matrix
- ROC curve
- Precision-Recall curve
- test summary file with the prediction for every test image (test_summary.txt)
Here add also the information needed to re-plot the ROC and PP curves (fpr,
tpr, roc_auc, precision and recall - micro and macro average)
The test_summary.txt file is a dictionary with the following entries:
- model_name: string
- labels: list of the true values fot the tested images
- fold_test_values: list containing the predictions for every fold (list of lists)
- test_time: string
- test date: string
- accuracy: float
- false_positive_rate: list containing the fpr for every class (list of lists)
- false_positive_rate_micro_avg: list containing the micro average fpr (used for the overall roc plot)
- false_positive_rate_macro_avg: list containing the macro average fpr (used for the overall roc plot)
- true_positive_rate: list containing the tpr for every class (list of lists)
- true_positive_rate_micro_avg: list containing the micro average tpr (used for the overall roc plot)
- true_positive_rate_macro_avg: list containing the macro average tpr (used for the overall roc plot)
- precision: list containing the precision values for every class to plot the PP (list of lists)
- precision_micro_avg: list of overall micro average of precision
- average_precision: average precision value computed using micro average
- recall: list containing the recall value for every class to plot the PP (list of lists)
- recall_micro_avg: list of overall micro average of recall
- F1: list of micro and macro average f1-score
Since the full test_summary file is long to open, the scores are also saved in a separate file for easy access
scores_test_summary.txt
'''
print(f'Saving information...')
# ############# save the information that is already available
test_summary = OrderedDict()
# for backwards compatibility
if "number_crossvalidation_repetitions" in config.keys():
n_cv = config['N_FOLDS']*config['number_crossvalidation_repetitions']
else:
n_cv = config['N_FOLDS']
test_summary['model_name'] = config['model_save_name']
test_summary['labels'] = [int(i) for i in test_fold_summary[0]['ground_truth']]
test_summary['folds_test_logits_values'] = [test_fold_summary[cv]['prediction'].tolist() for cv in range(n_cv)]
test_summary['test_time'] = utilities.tictoc_from_time(np.sum([test_fold_summary[cv]['test_time'] for cv in range(n_cv)]))
test_summary['test_model_version'] = model_version
test_summary['test_date'] = time.strftime("%Y%m%d-%H%M%S")
# ############ plot and save confucion matrix
ensemble_pred_argmax = []
ensemble_pred_logits = []
# compute ensemble
# compute the logits mean along the folds
ensemble_pred_logits = np.array(test_summary['folds_test_logits_values']).mean(axis=0)
# compute argmax prediction
ensemble_pred_argmax = np.argmax(ensemble_pred_logits, axis=1)
acc = utilities.plotConfusionMatrix(test_summary['labels'], ensemble_pred_argmax,
classes=config['label_description'],
savePath=model_path,
saveName=f'ConfusionMatrix_{model_version}_model',
draw=False)
# ############ plot and save ROC curve
fpr, tpr, roc_auc = utilities.plotROC(test_summary['labels'], ensemble_pred_logits,
classes=config['label_description'],
savePath=model_path,
saveName=f'Multiclass_ROC_{model_version}_model',
draw=False)
# make elements of the dictionary to be lists for saving
for key, value in fpr.items():
fpr[key]=value.tolist()
for key, value in tpr.items():
tpr[key]=value.tolist()
for key, value in roc_auc.items():
roc_auc[key]=value.tolist()
# ############ plot and save PR curve
precision, recall, average_precision, F1 = utilities.plotPR(test_summary['labels'],
ensemble_pred_logits,
classes=config['label_description'],
savePath=model_path,
saveName=f'Multiclass_PR_{model_version}_model',
draw=False)
# make elements of the dictionary to be lists for saving
for key, value in precision.items():
precision[key]=value.tolist()
for key, value in recall.items():
recall[key]=value.tolist()
# save all the information in the test summary
test_summary['accuracy'] = acc
# test_summary['false_positive_rate'] = [fpr[i].tolist() for i in range(len(class_labels))]
test_summary['false_positive_rate'] = fpr
# test_summary['false_positive_rate_micro_avg'] = fpr['micro'].tolist()
# test_summary['false_positive_rate_macro_avg'] = fpr['macro'].tolist()
test_summary['true_positive_rate'] = tpr
# test_summary['true_positive_rate'] = [tpr[i].tolist() for i in range(len(class_labels))]
# test_summary['true_positive_rate_micro_avg'] = tpr['micro'].tolist()
# test_summary['true_positive_rate_macro_avg'] = tpr['macro'].tolist()
test_summary['roc_auc'] = roc_auc
test_summary['precision'] = precision
# test_summary['precision'] = [precision[i].tolist() for i in range(len(class_labels))]
# test_summary['precision_micro_avg'] = precision['micro'].tolist()
test_summary['recall'] = recall
# test_summary['recall'] = [recall[i].tolist() for i in range(len(class_labels))]
# test_summary['recall_micro_avg'] = recall['micro'].tolist()
test_summary['average_precision'] = average_precision
test_summary['F1'] = F1
# save summary file
with open(os.path.join(model_path,f'{model_version}_model_version_test_summary.txt'), 'w') as fp:
json.dump(test_summary, fp)
## save summary (can be improved, but using the routine from print_model_performance)
from sklearn.metrics import average_precision_score, recall_score, roc_auc_score, f1_score, confusion_matrix, accuracy_score, matthews_corrcoef
def get_metrics(true_logits, pred_logits, average='macro'):
'''
Utility that given confusion matrics, returns a dictionary containing:
tptnfpfn : overall TP, TN, FP, FN values for each of the classes
precision (specificity) : for each of the classes
recall (sensitivity) : for each of the classes
f1-score : for each of the classes
auc : for each of the classes
overall_acc : over all classes
overall_specificity : over all classes
overall_precision : over all classes
overall_f1-score : over all classes
overall_auc : over all classes
'''
# compute confusion matrix
cnf_matrix = confusion_matrix(np.argmax(true_logits,-1), np.argmax(pred_logits, -1))
# compute TP, TN, FP, FN
FP = (cnf_matrix.sum(axis=0) - np.diag(cnf_matrix)).astype(float)
FN = (cnf_matrix.sum(axis=1) - np.diag(cnf_matrix)).astype(float)
TP = (np.diag(cnf_matrix)).astype(float)
TN = (cnf_matrix.sum() - (FP + FN + TP)).astype(float)
# compute per class metrics
summary_dict = {
'precision': TN / (FP+TN),
'recall': TP / (TP+FN),
'accuracy': (TP+TN) / (TP+TN+FP+FN),
'f1-score': TP / (TP + 0.5*(FP+FN)),
'auc': roc_auc_score(true_logits, pred_logits, average=None),
}
# compute overall metrics
# note that these metrics, especially those that depend on a threshold,
# will the average metrics over all the tresholds and will be different
# compared to the single threshold computed above (threshold=0.5)
summary_dict['overall_precision']=average_precision_score(true_logits,
pred_logits,
average=average)
summary_dict['overall_recall']=recall_score(np.argmax(true_logits,-1),
np.argmax(pred_logits,-1),
average=average)
summary_dict['overall_accuracy']=accuracy_score(np.argmax(true_logits,-1),
np.argmax(pred_logits,-1))
summary_dict['overall_f1-score']=f1_score(np.argmax(true_logits,-1),
np.argmax(pred_logits,-1),
average=average)
summary_dict['overall_auc']=roc_auc_score(true_logits,
pred_logits,
multi_class='ovr',
average=average)
summary_dict['matthews_correlation_coef']=matthews_corrcoef(np.argmax(true_logits,-1),
np.argmax(pred_logits,-1),)
return summary_dict
n_folds = len(folds)
print()
labels = np.eye(np.unique(test_summary['labels']).shape[0])[test_summary['labels']]
pred_logits = test_summary['folds_test_logits_values']
# Computupe per fold performance
per_fold_performance = []
for f in range(len(folds)):
per_fold_performance.append(get_metrics(labels, pred_logits[f]))
# compute ensamble performance
# compute the logits mean along the folds
ensemble_pred_logits = np.array(pred_logits).mean(axis=0)
# compute argmax prediction
ensemble_pred_argmax = np.argmax(ensemble_pred_logits, axis=1)
performance_ensamble = get_metrics(labels, ensemble_pred_logits)
# ######################### printing on file
summary = open(os.path.join(model_path,f'{model_version}_model_version_short_test_summary.txt'), 'w')
summary.write(f'\nModel Name: {os.path.basename(model_path)}\n\n')
# add test time overall and per image
average_test_time = np.mean([test_fold_summary[cv]['test_time'] for cv in range(n_cv)])
average_test_time_per_image = np.mean([test_fold_summary[cv]['test_time'] for cv in range(n_cv)])/labels.shape[0]
summary.write(f'Overall model test time (average over folds): {utilities.tictoc_from_time(average_test_time)}\n')
summary.write(f'Average test time per image (average over folds): {utilities.tictoc_from_time(average_test_time_per_image)}\n\n')
# print a summary of the testing per fold, class and ensamble
keys = ['precision','recall', 'accuracy', 'f1-score', 'auc']
max_len_k=max([len(k) for k in keys])
classes = config['label_description']
max_len_c=max(max([len(k) for k in classes]),len('Overall'))
max_len_f=max([len(s) for s in ["Fold", "Average","STD","Ensamble"]])
# build dict that holds the avg of all metrics
avg_dict = {k:[] for k in keys}
# build headers strings
fold_str = f'{"Fold":^{max_len_f}}'
class_str = f'{"Class":^{max_len_c}}'
keys_str = ''.join([f'{k.capitalize():^{max_len_k+2}}' for k in keys])
# start printing
summary.write(f'\n{"¤"*(max_len_f+max_len_c+len(keys_str))}'+'\n')
summary.write(f'{"¤ Per-fold metrics ¤":^{(max_len_f+max_len_c+len(keys_str))}}'+'\n')
summary.write(f'{"¤"*(max_len_f+max_len_c+len(keys_str))}\n')
# print header
summary.write(fold_str+class_str+keys_str+'\n')
# print per fold and class metrics
for idx, fp in enumerate(per_fold_performance):
fold_num_str = f'{str(idx+1):^{max_len_f}}'
# print per class performance
for idc, c in enumerate(classes):
class_metrics = ''.join([f'{str(round(fp[k][idc],3)):^{max_len_k+2}}' for k in keys])
if idc == 0:
summary.write(fold_num_str+f'{c:^{max_len_c}}'+class_metrics+'\n')
else:
summary.write(f'{" ":^{max_len_f}}'+f'{c:^{max_len_c}}'+class_metrics+'\n')
# print overall performance
summary.write(f'{"-"*(max_len_f+max_len_c+len(keys_str))}'+'\n')
overall_metric_str = ''.join([f'{str(round(fp["overall_"+k],3)):^{max_len_k+2}}' for k in keys])
summary.write(fold_num_str+f'{"Overall":^{max_len_c}}'+overall_metric_str+'\n')
summary.write(f'{"-"*(max_len_f+max_len_c+len(keys_str))}'+'\n\n')
# save overall metrics for later
[avg_dict[k].append(fp['overall_'+k]) for k in keys]
# print average overall metrics for the folds
avg_overall_metric_str = ''.join([f'{str(round(np.mean(avg_dict[k]),3)):^{max_len_k+2}}' for k in keys])
std_overall_metric_str = ''.join([f'{str(round(np.std(avg_dict[k]),3)):^{max_len_k+2}}' for k in keys])
summary.write(f'{"="*(max_len_f+max_len_c+len(keys_str))}'+'\n')
summary.write(fold_str+class_str+keys_str+'\n')
summary.write(f'{"Average":^{max_len_f}}'+f'{"":^{len(class_str)}}'+avg_overall_metric_str+'\n')
summary.write(f'{"STD":^{max_len_f}}'+f'{"":^{len(class_str)}}'+std_overall_metric_str+'\n')
# plot ensamble metrics
summary.write(f'\n{"¤"*(max_len_f+max_len_c+len(keys_str))}'+'\n')
summary.write(f'{"¤ Ensamble metrics ¤":^{(max_len_f+max_len_c+len(keys_str))}}'+'\n')
summary.write(f'{"¤"*(max_len_f+max_len_c+len(keys_str))}\n')
# print header
summary.write(f'{"Ensamble":^{max_len_f}}'+class_str+keys_str+'\n')
# print per class performance
fp = performance_ensamble
for idc, c in enumerate(classes):
class_metrics = ''.join([f'{str(round(fp[k][idc],3)):^{max_len_k+2}}' for k in keys])
summary.write(f'{" ":^{max_len_f}}'+f'{c:^{max_len_c}}'+class_metrics+'\n')
# print overall performance
summary.write(f'{"-"*(max_len_f+max_len_c+len(keys_str))}'+'\n')
overall_metric_str = ''.join([f'{str(round(fp["overall_"+k],3)):^{max_len_k+2}}' for k in keys])
summary.write(f'{" ":^{max_len_f}}'+f'{"Overall":^{max_len_c}}'+overall_metric_str+'\n')
summary.close()
## print on terminal
print('Ensemble preformance\n')
max_len = max([len(key) for key in performance_ensamble.keys()])
[print(f'{key:{max_len}s}: {value}') for key, value in performance_ensamble.items()]
## save also the information in a .csv file useful for plotting (and hypothesis testing in case)
'''
The file should allow for easy plotting of the models performance based on
classification type, model, model_version (best, last, ensemble_best, ensemble_last),
metrics, training time inference time.
'''
def get_time_from_string(time_string):
'''
Utility that given a time_string formated as 0d:0h:0m:0s:0ms,
returns the number of hours
'''
splits = time_string.split(':')
# get the values for d, h, m, s, ms
time_values = [ [] for _ in range(len(splits))]
[[time_values[idx].append(c) for c in v if c.isnumeric()] for idx, v in enumerate(splits)]
time_values = [int(''.join(v)) for v in time_values]
hours = sum([tv*hv for tv, hv in zip(time_values, [24, 1, 1/60, 1/60**2, 1/60**3])])
return hours
def get_mean_training_time(model_path, model_version='best', debug=False):
'''
Utility that returns the mean trianing time over the folds
'''
fold_paths = glob.glob(os.path.join(model_path, 'fold_*',''))
per_fold_training_time = []
for idx, fp in enumerate(fold_paths):
# open summary training
with open(os.path.join(fp,'model_summary_json.txt')) as json_file:
training_summary = json.load(json_file)
# get number of hours for the best model
training_time = get_time_from_string(training_summary['TRAINING_TIME'])
# adjust if needed the training time for the last model
if model_version == 'last':
epoch_training_time = training_time/(training_summary['EPOCHS']+1e-6)
training_time = epoch_training_time*250
if debug:
print(f'Fold {idx+1} ({model_version}): {training_time:0.2f}')
per_fold_training_time.append(training_time)
return per_fold_training_time
## work on saving
import csv
summary_file = os.path.join(model_path,f'{model_version}_tabular_test_summary.csv')
csv_file = open(summary_file, "w")
writer = csv.writer(csv_file)
csv_header = ['classification_type',
'nbr_classes',
'model_type',
'model_version',
'fold',
'precision',
'recall',
'accuracy',
'f1-score',
'auc',
'training_time',
'matthews_correlation_coef',
]
writer.writerow(csv_header)
per_fold_training_time = get_mean_training_time(model_path, model_version=model_version)
classification_type = 'per-disease' if config['dataset_type']=='retinal' else 'normal-vs-cancer'
nbr_classes = 4 if config['dataset_type']=='retinal' else 2
# loop through all the folds and save information
rows_to_write = []
for idx, fp in enumerate(per_fold_performance):
rows_to_write.append([classification_type,
nbr_classes,
config['model_configuration'],
model_version,
idx+1,
fp['overall_precision'],
fp['overall_recall'],
fp['overall_accuracy'],
fp['overall_f1-score'],
fp['overall_auc'],
per_fold_training_time[idx],
fp['matthews_correlation_coef'],
])
# add ensamble information
rows_to_write.append([classification_type,
nbr_classes,
config['model_configuration'],
'ensemble',
'ensemble',
performance_ensamble['overall_precision'],
performance_ensamble['overall_recall'],
performance_ensamble['overall_accuracy'],
performance_ensamble['overall_f1-score'],
performance_ensamble['overall_auc'],
per_fold_training_time[idx],
performance_ensamble['matthews_correlation_coef'],
])
writer.writerows(rows_to_write)
csv_file.close()