-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathtrainval.py
154 lines (130 loc) · 5.05 KB
/
trainval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import torch
import torchvision
import tqdm
import pandas as pd
import pprint
import math
import itertools
import os, sys
import pylab as plt
import exp_configs
import time
import numpy as np
import torch.nn as nn
from src import models
from src import datasets
from src import optimizers
from src import utils as ut
from src import metrics
from haven import haven_wizard as hw
import argparse
from torch.backends import cudnn
from torch.nn import functional as F
from torch.utils.data import DataLoader
from torch.utils.data.sampler import RandomSampler
from torch.utils.data.dataloader import default_collate
# cudnn.benchmark = True
from haven import haven_utils as hu
from haven import haven_results as hr
from haven import haven_chk as hc
import shutil
import pprint
def trainval(exp_dict, savedir, args):
# Set seed and device
# ===================
seed = 42 + exp_dict['runs']
np.random.seed(seed)
torch.manual_seed(seed)
if args.cuda:
device = 'cuda'
torch.cuda.manual_seed_all(seed)
assert torch.cuda.is_available(), 'cuda is not, available please run with "-c 0"'
else:
device = 'cpu'
print('Running on device: %s' % device)
# Load Datasets
# ==================
train_set = datasets.get_dataset(dataset_name=exp_dict["dataset"],
split='train',
datadir=args.datadir,
exp_dict=exp_dict)
train_loader = DataLoader(train_set,
drop_last=True,
shuffle=True,
sampler=None,
batch_size=exp_dict["batch_size"])
val_set = datasets.get_dataset(dataset_name=exp_dict["dataset"],
split='val',
datadir=args.datadir,
exp_dict=exp_dict)
# Load Model
# ==================
model = models.get_model(train_loader, exp_dict, device=device)
model_path = os.path.join(savedir, "model.pth")
score_list_path = os.path.join(savedir, "score_list.pkl")
if os.path.exists(score_list_path):
# resume experiment
score_list = ut.load_pkl(score_list_path)
model.set_state_dict(torch.load(model_path))
s_epoch = score_list[-1]["epoch"] + 1
else:
# restart experiment
score_list = []
s_epoch = 0
# Train and Val
# ==============
for epoch in range(s_epoch, exp_dict["max_epoch"]):
# Set seed
seed = epoch + exp_dict.get('runs', 0)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
# Train one epoch
s_time = time.time()
model.train_on_loader(train_loader)
e_time = time.time()
# Validate one epoch
train_loss_dict = model.val_on_dataset(train_set, metric=exp_dict["loss_func"], name='loss')
val_acc_dict = model.val_on_dataset(val_set, metric=exp_dict["acc_func"], name='score')
# Record metrics
score_dict = {"epoch": epoch}
score_dict.update(train_loss_dict)
score_dict.update(val_acc_dict)
score_dict["step_size"] = model.opt.state.get("step_size", {})
score_dict["step_size_avg"] = model.opt.state.get("step_size_avg", {})
score_dict["n_forwards"] = model.opt.state.get("n_forwards", {})
score_dict["n_backwards"] = model.opt.state.get("n_backwards", {})
score_dict["grad_norm"] = model.opt.state.get("grad_norm", {})
score_dict["train_epoch_time"] = e_time - s_time
score_dict.update(model.opt.state["gv_stats"])
# Add score_dict to score_list
score_list += [score_dict]
# Report and save
print(pd.DataFrame(score_list).tail())
ut.save_pkl(score_list_path, score_list)
ut.torch_save(model_path, model.get_state_dict())
print("Saved: %s" % savedir)
if __name__ == "__main__":
import exp_configs
parser = argparse.ArgumentParser()
parser.add_argument('-e', '--exp_group_list', nargs="+")
parser.add_argument('-sb', '--savedir_base', required=True)
parser.add_argument('-d', '--datadir', required=True)
parser.add_argument("-r", "--reset", default=0, type=int)
parser.add_argument("-c", "--cuda", default=1, type=int)
parser.add_argument("-j", "--job_scheduler", default=None)
parser.add_argument("-p", "--python_binary_path", default=None)
args, others = parser.parse_known_args()
# Get job configuration to launch experiments in the cluster
job_config = None
if os.path.exists('job_configs.py'):
import job_configs
job_config = job_configs.JOB_CONFIG
# Run experiments either sequentially or in the cluster
hw.run_wizard(func=trainval,
exp_groups=exp_configs.EXP_GROUPS,
job_config=job_config,
job_scheduler=args.job_scheduler,
python_binary_path=args.python_binary_path,
use_threads=True,
args=args)