-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathproduce_I0_averages.m
101 lines (89 loc) · 5.58 KB
/
produce_I0_averages.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
function [ final_data_table ] = produce_I0_averages( final_data_table, detectorindices, scantype, final_x_values, file_list )
%PRODUCE_I0_AVERAGES Takes complete data table and computes and applies i0
% To improve signal-to-noise, similar scans (with matching x-values) are
% corrected with a common i_0.
%% Set up initial variables
I_zero = squeeze(final_data_table(:,detectorindices.I0,:));
run_set={}; %n_remaining_runs_to_sort = size(I_zero,3); groupnumber=1;
if strcmp(scantype,'Timescan')
all_x_values = squeeze(final_data_table(:,detectorindices.TimeIndex,:));
elseif strcmp(scantype,'Spectrum')
all_x_values = squeeze(final_data_table(:,detectorindices.EnergyIndex,:));
end
%% For each scan, make a list of matching scan that share identical x-values.
for i=1:size(final_data_table,3)
run_set{i}=find(ismember(all_x_values',all_x_values(:,i)','rows')); % Identify runs with identical sets of x values
end
%% Produce averaged I_zero for each scan:
for i=1:size(final_data_table,3) % For every run...
% Throw out data where I_0 has dropped with respect to similar scans
% if numel(run_set{i})>2 % Skip this if there aren't enough scans to make a distribution.
for current_x=1:size(final_data_table,1) % For every x value...
current_i0 = squeeze(final_data_table(current_x,detectorindices.I0,run_set{i}));
if sum(current_i0)>0
% i0_fit = fitdist(current_i0(current_i0~=0),'Normal'); % Make Normal distribution of the I_zero values at current x value
% lower_i0_limit{i}(j) = i0_fit.mu-2*i0_fit.sigma;
% upper_i0_limit{i}(j) = i0_fit.mu+2*i0_fit.sigma;
lower_i0_limit{i}(current_x) = mean(current_i0,'omitnan')*.97;
upper_i0_limit{i}(current_x) = mean(current_i0,'omitnan')*1.03;
extremei0_points{current_x} = find(current_i0<lower_i0_limit{i}(current_x) | current_i0>upper_i0_limit{i}(current_x)); % Find runs with extremely high or low I_0 values (within the current list)
if not(isempty(extremei0_points{current_x}))
extremei0_runs{current_x} = run_set{i}(extremei0_points{current_x});% Convert that bad run/point list to global scan number
else
extremei0_runs{current_x} = [];
end
end
end
if length(lower_i0_limit{i})<length(final_x_values)
lower_i0_limit{i}(length(final_x_values))= NaN(1); % Add a little trailing data so that this variable doesn't terminate prematurely.
upper_i0_limit{i}(length(final_x_values))= NaN(1); % Add a little trailing data so that this variable doesn't terminate prematurely.
extremei0_runs{size(final_data_table,1)}=[]; % Add a little trailing data so that this variable doesn't terminate prematurely.
end
lower_i0_limit{i}(lower_i0_limit{i}==0) = NaN(1);
upper_i0_limit{i}(upper_i0_limit{i}==0) = NaN(1);
% end
end
%% Plot I_zeros before any bad points are removed
figure(8);clf;
for i=1:size(final_data_table,3)
hold on;subplot(1,3,1);
plot(final_x_values(final_data_table(:,detectorindices.I0,i)~=0),nonzeros(final_data_table(:,detectorindices.I0,i))); title('Individual I_{0} before removal of bad points');
plot(final_x_values(~isnan(lower_i0_limit{i})),lower_i0_limit{i}(~isnan(lower_i0_limit{i})),final_x_values(~isnan(lower_i0_limit{i})),upper_i0_limit{i}(~isnan(lower_i0_limit{i})),'Linewidth',2);
legend(file_list);
end
figure(9);clf;
for i=1:size(final_data_table,3)
hold on;
plot(final_x_values(final_data_table(:,detectorindices.I0,i)~=0),nonzeros(final_data_table(:,detectorindices.I0,i))); title('Individual I_{0}');
end
%% Set data for outlying points to zero
for current_x=1:size(final_data_table,1) % For every x value...
final_data_table(current_x,:,extremei0_runs{current_x})=NaN(1); % ...clear out entire row corresponding to bad I_zero values
end
final_data_table(final_data_table==0)=NaN(1);
%% Produce average I_zero for each run
for i=1:size(final_data_table,3) % For every run...
% averaged_I_zero{i} = sum(final_data_table( :, detectorindices.I0, run_set{i} ),3,'omitnan')./sum(final_data_table( :, detectorindices.I0, run_set{i} )~=0,3);
averaged_I_zero{i} = mean(final_data_table( :, detectorindices.I0, run_set{i} ),3,'omitnan');
averaged_I_zero{i}(averaged_I_zero{i}==0) = NaN(1);
end
%% Plot I_0
figure(8);
for i=1:size(final_data_table,3)
subplot(1,3,2);hold on;
current_plot = nonzeros(final_data_table(:,detectorindices.I0,i));
plot(final_x_values(~isnan(lower_i0_limit{i})),current_plot(~isnan(lower_i0_limit{i}))); title('Individual I_{0}');
plot(final_x_values(~isnan(lower_i0_limit{i})),lower_i0_limit{i}(~isnan(lower_i0_limit{i})),final_x_values(~isnan(lower_i0_limit{i})),upper_i0_limit{i}(~isnan(lower_i0_limit{i})),'Linewidth',2);
subplot(1,3,3);hold on;
plot(final_x_values(averaged_I_zero{i}~=0),nonzeros(averaged_I_zero{i})); title('Average I_{0} per set');
end
legend(file_list);
%% Apply those averaged I_zeros
for i=1:size(final_data_table,3)
final_data_table(:,detectorindices.TFY_LaserON,i)=final_data_table(:,detectorindices.TFY_LaserON,i)./averaged_I_zero{i};
final_data_table(:,detectorindices.TFY_LaserOFF,i)=final_data_table(:,detectorindices.TFY_LaserOFF,i)./averaged_I_zero{i};
final_data_table(:,detectorindices.HERFD_LaserON,i)=final_data_table(:,detectorindices.HERFD_LaserON,i)./averaged_I_zero{i};
final_data_table(:,detectorindices.HERFD_LaserOFF,i)=final_data_table(:,detectorindices.HERFD_LaserOFF,i)./averaged_I_zero{i};
final_data_table(:,detectorindices.I0,i)=I_zero(:,i);
end
end