-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathProcessAPSdata.m
506 lines (451 loc) · 28.5 KB
/
ProcessAPSdata.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
% ProcessAPSdata.m processes the raw data from APS X-ray Absorption
% experiments performed in June 2017 by the LSU at EPFL.
clear
%% Choose the folder of all runs you want to average:
foldername=input('Give the name of the folder you want to load, no apostrophes, and slash at the end.','s');
cd(foldername); folderparse = strsplit(foldername);edgetype=lower(folderparse{2});foldernameparts = strsplit(foldername,'/');scandetails=foldernameparts{2};
if not(isempty(findstr(foldernameparts{2},'Spectra')));scantype='Spectrum';elseif not(isempty(findstr(foldernameparts{2},'Timescan')));scantype='Timescan';end;
foldercontents = dir('*.asc'); % Fetch all the scan numbers from available files
file_list = {foldercontents.name}';cd ../;cd ../;
xray_duration_FWHM = 80e-12; %seconds
monochromator_res_eV = .7;
% xray_duration = xray_duration_FWHM / 2.355; %seconds
%% Decide whether to use integrated signal (Br) or photon counting (Pb)
if strcmp(scantype,'Spectrum')
% Set limits on spectrum:
Br_lower_spectral_limit = 13.452;
Pb_lower_spectral_limit = 13.005;
x_rounding_factor = 4000; %4000 corresponds to .25eV, units of 1/keV
elseif strcmp(scantype,'Timescan')
x_rounding_factor = 1/(1e12); % Units are 1/seconds so this rounds to 1ps.
else
error('Unknown scan type, does not conform to Spectrum or Timescan.')
end
baselinecorrection_on=true; % Revert this to true for final analysis
i0_correction_on=true; % Revert this to true for final analysis
normalization_on=true; % Revert this to true for final analysis
dropbadframes=true; % Revert this to true for final analysis
normalize_pp=false; % Revert this to true for final analysis
if strcmp('files/pb',edgetype)
photoncounting=true;
elseif strcmp('files/br',edgetype)
photoncounting=false;
else
error('Unknown edge type. Is it Pb or Br?')
end
plotindividually=true;
%% Import ASCII data and make single matrix of all scans:
counter=0;
final_data_table = []; final_x_values = [];final_detectornames = {};
for k = 1:length(file_list)
%Import the ascii data
filename=strcat(foldername,file_list{k});
fid=fopen(filename);
if fid>0
counter=counter+1; %counter for the number of scans
fprintf('Processing scan number %1.0f.\n',k);
data=importdata(filename);
[detectorlist_minimal, NHEADERLINES] = extract_detectors(data, filename);
%Import the data into a cell array, ignoring header lines:
clear data_import x_values_to_add;
for i=(NHEADERLINES+1):numel(data)
data_import{i-NHEADERLINES}=strsplit(data{i});
end
% Remove last 4 data points for motor glitch:
if strcmp(scantype,'Spectrum')
data_import = data_import(4:end);
end
%% Put the values (for a single scan) into a table:
clear x_values;
for n=1:length(data_import)
x_values(n,1) = str2num(cell2mat(data_import{1,n}(2)));
end
if strcmp(scantype,'Spectrum')
x_values = round(x_rounding_factor*x_values)/x_rounding_factor;
if strcmp(edgetype,'files/br') || strcmp(edgetype,'files/br')
x_values(x_values<Br_lower_spectral_limit)=[];
data_import=data_import(x_values>=Br_lower_spectral_limit);
elseif strcmp(edgetype,'files/pb') || strcmp(edgetype,'files/pb')
x_values(x_values<Pb_lower_spectral_limit)=[];
data_import=data_import(x_values>=Pb_lower_spectral_limit);
end
elseif strcmp(scantype,'Timescan')
% x_values = round(10000*x_values)/10000;
else
disp('Unknown Scan Type');
end
%x_values=unique(x_values);
%% Just make the complete list of x-values to insert data later
if not(isequal(x_values,final_x_values))
% Find new values
x_values_to_add = x_values(not(ismember(x_values,final_x_values)));
n_new_x_values = sum(not(ismember(x_values,final_x_values)));
% Tack new x_values onto the end of the previously-loaded scans, then sort new values into final_x_values
[final_x_values,x_sort_index] = sort(cat(1,final_x_values,x_values_to_add));
% Tack zeros onto the end of the x-values, then sort them into the list to expand and accomodate .
final_data_table = cat(1,final_data_table,zeros([n_new_x_values size(final_data_table,2) size(final_data_table,3)]));
if not(isempty(final_data_table))
final_data_table = final_data_table(x_sort_index,:,:); % Expanding existing final_data_table to accomodate current run.
end
end
%% Insert new columns for added detectors:
if not(isequal(detectorlist_minimal,final_detectornames))
if isempty(final_detectornames)
detectornames_to_add = detectorlist_minimal;
n_new_detectors = numel(detectorlist_minimal);
else
detectornames_to_add = detectorlist_minimal(not(ismember(detectorlist_minimal,final_detectornames)));
n_new_detectors = sum(not(ismember(detectorlist_minimal,final_detectornames)));
% Insert zeros into final_data_table for all previous scans
final_data_table = cat(2,final_data_table,zeros([size(final_data_table,1) n_new_detectors size(final_data_table,3)]));
end
% Insert new detector names into list
[final_detectornames,detector_sort_index] = sort(cat(2,final_detectornames,detectornames_to_add));
if not(isempty(final_data_table))
final_data_table = final_data_table(:,detector_sort_index,:);
end
end
% Take this scan's data matrix and rearrange values to match prior
% scans' format:
num_detectors = numel(data_import{1});
[ data_table ] = move_values( data_import, x_values, detectorlist_minimal, final_detectornames , x_rounding_factor, final_x_values, num_detectors);
% Tack this scan onto prior scans:
if isempty(final_data_table)
final_data_table = data_table;
else
final_data_table(:,:,counter)=data_table(:,:);
end
fclose(fid);
else
%execute that part in case of multiple scans
filename=strcat(sprintf('%s%04.0f_001.asc',basename,k));
fid=fopen(filename);
if fid>0
counter_multiple=0;
while 1>0
counter_multiple=counter_multiple+1;
filename=strcat(sprintf('%s%04.0f_%03.0f.asc',basename,k,counter_multiple));
fid=fopen(filename);
if fid>0
fclose(fid);
else
break;
end
end
counter_multiple=counter_multiple-1;
for l=1:counter_multiple
counter=counter+1; %counter for the number of scans
fprintf('Processing scan number %1.0f_%03.0f.\n',k,l);
filename=strcat(sprintf('%s%04.0f_%03.0f.asc',basename,k,l));
data=importdata(filename);
[detectorlist_minimal, NHEADERLINES] = extract_detectors(data,filename);
% Check if the current run has 6-second integration in
% addition to 3-second integration:
find(strcmp(detectorlist_minimal,' 7idb:userCalc13.VAL, boxcarOFF (6s), '))
%Import the data into a cell array, ignoring header lines:
clear data_import x_values_to_add;
for i=(NHEADERLINES+1):numel(data)
data_import{i-NHEADERLINES}=strsplit(data{i});
end
% Remove last 4 data points for motor glitch:
if strcmp(scantype,'Spectrum')
data_import = data_import(4:end);
end
%% Put the values (for a single scan) into a table:
clear x_values;
for n=1:length(data_import)
x_values(n,1) = str2num(cell2mat(data_import{1,n}(2)));
end
if strcmp(scantype,'Spectrum')
x_values = round(x_rounding_factor*x_values)/x_rounding_factor;
if strcmp(edgetype,'files/br') || strcmp(edgetype,'files/br')
x_values(x_values<Br_lower_spectral_limit)=[];
data_import=data_import(x_values>=Br_lower_spectral_limit);
elseif strcmp(edgetype,'files/pb') || strcmp(edgetype,'files/pb')
x_values(x_values<Pb_lower_spectral_limit)=[];
data_import=data_import(x_values>=Pb_lower_spectral_limit);
end
elseif strcmp(scantype,'Timescan')
% x_values = round(10000*x_values)/10000;
else
disp('Unknown Scan Type');
end
%x_values=unique(x_values);
%% Insert new x values and shift previous final_data_table
if not(isequal(x_values,final_x_values))
% Find new values
x_values_to_add = x_values(not(ismember(x_values,final_x_values)));
n_new_x_values = sum(not(ismember(x_values,final_x_values)));
% Insert new values into final_x_values
[final_x_values,x_sort_index] = sort(cat(1,final_x_values,x_values_to_add));
% Insert zeros into final_data_table for all previous scans.
final_data_table = cat(1,final_data_table,zeros([n_new_x_values size(final_data_table,2) size(final_data_table,3)]));
if not(isempty(final_data_table))
final_data_table = final_data_table(x_sort_index,:,:); % This sorts final_data_table by x-value
end
end
%% Insert new columns for added detectors:
if not(isequal(detectorlist_minimal,final_detectornames))
if not(isempty(final_detectornames))
detectornames_to_add = detectorlist_minimal(not(ismember(detectorlist_minimal,final_detectornames)));
n_new_detectors = sum(not(ismember(detectorlist_minimal,final_detectornames)));
% Insert zeros into final_data_table for all previous scans
final_data_table = cat(2,final_data_table,zeros([size(final_data_table,1) n_new_detectors size(final_data_table,3)]));
else
detectornames_to_add = detectorlist_minimal;
n_new_detectors = numel(detectorlist_minimal);
end
% Insert new detector names into list
[final_detectornames,detector_sort_index] = sort(cat(2,final_detectornames,detectornames_to_add));
if not(isempty(final_data_table))
final_data_table = final_data_table(:,detector_sort_index,:);
end
end
% Take this scan's data matrix and rearrange values to match prior
% scans' format:
num_detectors = numel(data_import{1});
[ data_table ] = move_values( data_import, x_values, detectorlist_minimal, final_detectornames , x_rounding_factor, final_x_values, num_detectors);
if isempty(final_data_table)
final_data_table = data_table;
else
final_data_table(:,:,counter)=data_table(:,:);
end
end
else
end
if fid>0
fclose(fid);
else
end
end
end
%% Find I0 and detector indexes:
[ detectorindices ] = find_detector_indices( final_detectornames, photoncounting );
%% Split 6-second data into 2 separate scans of 3-second data:
if not(photoncounting)
% Find runs that have 6-second data:
scanswith6 = find(squeeze(sum(final_data_table(:,detectorindices.TFY_LaserOFF6sec,:)~=0 & isfinite(final_data_table(:,detectorindices.TFY_LaserOFF6sec,:)))));
% Concatenate the data set with another copy of the 6-second data scan:
final_data_table=cat(3,final_data_table,final_data_table(:,:,scanswith6));
% Overwrite original 3-second data with 2*6-second minus 3-second data:
final_data_table(:,detectorindices.TFY_LaserOFF,scanswith6) = 2*final_data_table(:,detectorindices.TFY_LaserOFF6sec,scanswith6)-final_data_table(:,detectorindices.TFY_LaserOFF3sec,scanswith6);
final_data_table(:,detectorindices.TFY_LaserON,scanswith6) = 2*final_data_table(:,detectorindices.TFY_LaserON6sec,scanswith6)-final_data_table(:,detectorindices.TFY_LaserON3sec,scanswith6);
final_data_table(:,detectorindices.HERFD_LaserOFF,scanswith6) = 2*final_data_table(:,detectorindices.HERFD_LaserOFF6sec,scanswith6)-final_data_table(:,detectorindices.HERFD_LaserOFF3sec,scanswith6);
final_data_table(:,detectorindices.HERFD_LaserON,scanswith6) = 2*final_data_table(:,detectorindices.HERFD_LaserON6sec,scanswith6)-final_data_table(:,detectorindices.HERFD_LaserON3sec,scanswith6);
end
%% Reverse sign of the detector for integrating detectors:
if not(photoncounting)
final_data_table(:,detectorindices.TFY_LaserOFF,:) = -(final_data_table(:,detectorindices.TFY_LaserOFF,:));
final_data_table(:,detectorindices.TFY_LaserON,:) = -(final_data_table(:,detectorindices.TFY_LaserON,:));
elseif photoncounting
final_data_table(:,detectorindices.TFY_LaserOFF_bak,:)=-final_data_table(:,detectorindices.TFY_LaserOFF_bak,:); % Only flips sign of the backup data used when photon counting data is missing.
final_data_table(:,detectorindices.TFY_LaserON_bak,:)=-final_data_table(:,detectorindices.TFY_LaserON_bak,:);
%% If photon counting is missing for some runs, scale and copy integrated data instead:
for i=1:size(final_data_table,3) % Loop over all scans...
if sum(final_data_table(:,detectorindices.TFY_LaserOFF,i))==0
final_data_table(:,detectorindices.TFY_LaserOFF,i) = final_data_table(:,detectorindices.TFY_LaserOFF_bak,i); % Replace photon-counting data with integrated data and scale.
final_data_table(:,detectorindices.TFY_LaserON,i) = final_data_table(:,detectorindices.TFY_LaserON_bak,i);
end
end
end
%% Complicated I_zero averaging: Average together I_zeros for runs with the exact same x-values and apply averaged I_zero to those runs
if not(i0_correction_on)
disp('Warning: I0 correction is off')
else
[ final_data_table ] = produce_I0_averages( final_data_table, detectorindices, scantype, final_x_values, file_list );
end
%% Normalize data
if strcmp(scantype,'Timescan')
% Correction for glitch in the phase shifter!
PhaseShift = squeeze(final_data_table(:,detectorindices.PhaseShifter,1));
final_x_values(PhaseShift<2560) = final_x_values(PhaseShift<2560) + 40e-12;
%Correct for time-zero
timezero = 1.6978e-7; % First reading: 169.76ns, second reading: 169.76ns
final_x_values = final_x_values - timezero;
% Do baseline correction:
[ final_data_table, discardedruns ] = correct_baseline( baselinecorrection_on, scantype, final_data_table, detectorindices,final_x_values, 0 );
% Then scale the data
if normalization_on
normalization_start_index=1; normalization_stop_index=length(final_x_values);
[ final_data_table ] = normalize_data( final_data_table, detectorindices, normalization_start_index, normalization_stop_index);
end
elseif strcmp(scantype,'Spectrum')
if strcmp(edgetype,'files/br') || strcmp(edgetype,'files/br')
normalization_start_index = find(final_x_values>13.52,1);
normalization_stop_index = find(final_x_values>13.53,1);
baseline_indices = find(final_x_values>13.46,1);
elseif strcmp(edgetype,'files/pb') || strcmp(edgetype,'files/pb')
normalization_start_index = find(final_x_values>13.045,1);
normalization_stop_index = find(final_x_values>13.055,1);
baseline_indices = find(final_x_values>13.02,1);
end
% Do baseline correction first:
if not(isempty(baseline_indices))
[ final_data_table,~ ] = correct_baseline( baselinecorrection_on, scantype, final_data_table,detectorindices,final_x_values, baseline_indices);
end
% Then scale the data:
if normalization_on
[ final_data_table ] = normalize_data( final_data_table, detectorindices, normalization_start_index, normalization_stop_index );
end
end
%% Find and remove data points where the X-ray intensity dropped:
% Make a histogram at each x-value and delete remarkably low points:
if dropbadframes
for current_x = 1:length(final_x_values)
current_vals = squeeze(final_data_table(current_x,detectorindices.TFY_LaserOFF,:));
% First drop the lowest value:
% [~,lowest_current] = min(current_vals); current_vals(lowest_current) = mean(current_vals,'omitnan');
% figure(12);subplot(2,1,1);hist(current_vals,100);
x_ray_dropped_cutoff = mean(current_vals,'omitnan') - 3*std(current_vals,'omitnan');
dropped_points{current_x} = find(current_vals<x_ray_dropped_cutoff);
final_data_table(current_x,:,dropped_points{current_x})=NaN(1);
% subplot(2,1,2);hist(squeeze(final_data_table(current_x,detectorindices.TFY_LaserOFF,:)),100);
% pause(1)
end
end
%% Adjust pump-probe magnitude to counteract laser drift (or at least prepare to use it later:
if normalize_pp
pp_norm_term = squeeze(mean(abs(final_data_table(:,detectorindices.TFY_LaserON,:)-final_data_table(:,detectorindices.TFY_LaserOFF,:)),'omitnan'));
pp_norm_term = pp_norm_term/mean(pp_norm_term,'omitnan');
for i = 1:size(final_data_table,3)
final_data_table(:,detectorindices.TFY_LaserOFF,i) = final_data_table(:,detectorindices.TFY_LaserOFF,i)./pp_norm_term(i);
final_data_table(:,detectorindices.TFY_LaserON,i) = final_data_table(:,detectorindices.TFY_LaserON,i)./pp_norm_term(i);
end
end
%% Examine the noise level of each scan:
% noise_laserON = sum(abs(diff(squeeze(final_data_table(:,detectorindices.TFY_LaserOFF,:)))),'omitnan');
% noise_laserOFF = sum(abs(diff(squeeze(final_data_table(:,detectorindices.TFY_LaserON,:)))),'omitnan');
% noise_normalizer = max(abs(squeeze(final_data_table(:,detectorindices.TFY_LaserON,:)-final_data_table(:,detectorindices.TFY_LaserOFF,:))));
% noisiness = (noise_laserON+noise_laserOFF)./noise_normalizer;
% % final_data_table(:,:,noisiness>300) = [];
% figure(5);hist(noisiness,20);title('Histogram of run noisiness');
%% Averaging of all available data:
% Remove x-values where there's no TFY data due to a detector or naming glitch:
TFY_present = find(sum(final_data_table(:,detectorindices.TFY_LaserOFF,:),3));
final_data_table = final_data_table(TFY_present,:,:);
final_x_values = final_x_values(TFY_present);
% average_data_table=mean(final_data_table,3);
n_3s_scans_per_point = squeeze(sum(final_data_table(:,detectorindices.TFY_LaserOFF3sec,:)~=0 & isfinite(final_data_table(:,detectorindices.TFY_LaserOFF3sec,:)),3)); % Only count nonzero values.
n_6s_scans_per_point = squeeze(sum(final_data_table(:,detectorindices.TFY_LaserOFF6sec,:)~=0 & isfinite(final_data_table(:,detectorindices.TFY_LaserOFF6sec,:)),3)); % Only count nonzero values.
disp([num2str(max(n_3s_scans_per_point)),' scans include 3s integration, ',num2str(max(n_6s_scans_per_point/2)),' of which are split 6s integration.'])
n_points_per_scan = squeeze(sum(final_data_table(:,detectorindices.TFY_LaserOFF,:)~=0 & isfinite(final_data_table(:,detectorindices.TFY_LaserOFF,:)),1)); % Only count nonzero values.
if ismember(0,n_points_per_scan)
disp('Some runs have no data being used! Please check data for NaNs')
end
% For runs that have 6-second integration, double-count it and use that instead:
n_scans_per_point = sum(final_data_table(:,detectorindices.TFY_LaserOFF,:)~=0 & isfinite(final_data_table(:,detectorindices.TFY_LaserOFF,:)),3); % Only count nonzero values.
% Average all scans equally:
average_data_table=sum(final_data_table,3,'omitnan')./repmat(n_scans_per_point,[1 size(final_data_table,2)]);
TFY_total_ONandOFF = .5*nonzeros(average_data_table(:,detectorindices.TFY_LaserON)+average_data_table(:,detectorindices.TFY_LaserOFF));
TFY_pump_probe_avg = (average_data_table(:,detectorindices.TFY_LaserON)-average_data_table(:,detectorindices.TFY_LaserOFF));
HERFD_pump_probe_avg = average_data_table(:,detectorindices.HERFD_LaserON)-average_data_table(:,detectorindices.HERFD_LaserOFF);
%% For timescans, ensure signs are flipped when observing a bleach feature.
if strcmp(scantype,'Timescan')
TFY_pump_probe_avg = abs(TFY_pump_probe_avg);
end
%% Filter out frequencies in the data higher than monochromator resolution:
try
if strcmp(scantype,'Spectrum')
[TFY_pump_probe_avg] = monochromator_lowpass(TFY_pump_probe_avg,final_x_values,monochromator_res_eV);
end
catch
disp('Sampling rate was not high enough to remove high-frequency noise.');
end
%% Also get error for error bars:
finaltable_forerrors = final_data_table; finaltable_forerrors(final_data_table==0) = NaN(1);
if photoncounting
TFY_pump_probe_error = std( finaltable_forerrors(:,detectorindices.TFY_LaserON,:)-finaltable_forerrors(:,detectorindices.TFY_LaserOFF,:),0,3,'omitnan' );
HERFD_pump_probe_error = std( finaltable_forerrors(:,detectorindices.HERFD_LaserON,:)-finaltable_forerrors(:,detectorindices.HERFD_LaserOFF,:),0,3,'omitnan' );
else
TFY_pump_probe_error = std( finaltable_forerrors(:,detectorindices.TFY_LaserON,:)-finaltable_forerrors(:,detectorindices.TFY_LaserOFF,:),0,3,'omitnan' );
HERFD_pump_probe_error = std( finaltable_forerrors(:,detectorindices.HERFD_LaserON,:)-finaltable_forerrors(:,detectorindices.HERFD_LaserOFF,:),0,3,'omitnan' );
end
%% Do a final test of all data to make sure TFY exists:
discardedruns=0;
for i=1:size(final_data_table,3)
totalTFY(i) = sum(final_data_table(:,detectorindices.TFY_LaserOFF,i),'omitnan');
if totalTFY(i)==0;discardedruns = discardedruns+1;end
end
%% Plot all the individual scans, TFY and HERFD:
legend_plot = {};
if strcmp(scantype,'Spectrum')
% Individual TFY plots
if plotindividually
figure(1);clf;hold off;
for i=1:size(final_data_table,3)
if totalTFY(i)>0 % Don't bother to plot runs without data.
x_for_plotting = final_x_values(final_data_table(:,detectorindices.TFY_LaserON,i)~=0);
x_for_plotting_pp = final_x_values((final_data_table(:,detectorindices.TFY_LaserON,i)-final_data_table(:,detectorindices.TFY_LaserOFF,i))~=0);
avgONandOFF = .5*nonzeros(final_data_table(:,detectorindices.TFY_LaserON,i)+final_data_table(:,detectorindices.TFY_LaserOFF,i));
transient_spectrum_y = nonzeros(final_data_table(:,detectorindices.TFY_LaserON,i)-final_data_table(:,detectorindices.TFY_LaserOFF,i));
subplot(2,2,1); hold on; plot(x_for_plotting(~isnan(avgONandOFF)),avgONandOFF(~isnan(avgONandOFF)),'Linewidth',2);
subplot(2,2,3); hold on; plot(x_for_plotting_pp(~isnan(transient_spectrum_y)),transient_spectrum_y(~isnan(transient_spectrum_y)),'Linewidth',2);
legend_plot{length(legend_plot)+1}=sprintf('scan%1.0f',i);
end
end
subplot(2,2,1);title(['Single scans, TFY, ',scandetails]); xlabel('Energy (keV)');ylabel('Fluorescence (A.U.)'); %legend(legend_plot);
subplot(2,2,3);title(['Single scans, TFY, ',scandetails,' pump-probe transient']); xlabel('Energy (keV)'); ylabel('\Delta Fluorescence (A.U.)'); %legend(legend_plot);
end
elseif strcmp(scantype,'Timescan')
if plotindividually
figure(1);clf;hold off;
for i=1:size(final_data_table,3)
% plot(-final_x_values(final_data_table(:,detectorindices.TFY_LaserON,i)~=0),final_data_table(:,detectorindices.TFY_LaserON,i)-final_data_table(:,detectorindices.TFY_LaserOFF,i),'Linewidth',2);
plot(-final_x_values,final_data_table(:,detectorindices.TFY_LaserON,i)-final_data_table(:,detectorindices.TFY_LaserOFF,i),'Linewidth',2);
legend_plot{i}=sprintf('scan%1.0f',i); hold on;
end
title(['Single scans, TFY, ',num2str(scandetails)]); xlabel('Time (sec)'); ylabel('\Delta Fluorescence (A.U.)'); %legend(legend_plot);
end
else
error('Unidentified scan type. Does not match "Timescan" or "Spectrum".');
end
%% Plot the averaged data
if strcmp(scantype,'Spectrum')
figure(1);
subplot(2,2,2);
plot(nonzeros(final_x_values),TFY_total_ONandOFF,'Linewidth',2);
title(['Average of ',num2str(counter),' scans, ',num2str(scandetails)]); xlabel('Energy (keV)');ylabel('Fluorescence (A.U.)');
subplot(2,2,4);
errorbar(final_x_values,TFY_pump_probe_avg,TFY_pump_probe_error,'Linewidth',2);
% plot(final_x_values,-TFY_pump_probe_avg,'Linewidth',2);
xlabel('Energy (keV)'); ylabel('\Delta Fluorescence (A.U.)');
elseif strcmp(scantype,'Timescan')
figure(2);subplot(1,1,1); % Fitting has to be done in picoseconds, since MATLAB doesn't like dealing with tiny numbers.
plottable_x = -(final_x_values(~isnan(TFY_pump_probe_avg)))*1e12;% Note that data is now in units of picoseconds because that makes optimization better (stopping conditions)
[~,y_max] = max(abs(TFY_pump_probe_avg));
plottable_y = TFY_pump_probe_avg(~isnan(TFY_pump_probe_avg))./TFY_pump_probe_avg(y_max);
%% Fit timescans with biexponential decay (Results from MicroXAS were published as [64percent 542ps arbitrary_scaling_factor 104ns timezero_adjustment]):
CsPbBr3_starting_fit_coeffss = [.64 542 1 104e3 20];
% bestfit = fit(plottable_x,plottable_y,'c*(a*exp(-(x)/b) + (1-a)*exp(-(x)/d))*heaviside(x)','StartPoint',CsPbBr3_starting_fit_coeffss)
bestfit = fit(plottable_x,plottable_y,'c*(a*exp(-(x+e)/b) + (1-a)*exp(-(x+e)/d))*(.5)*(1+erf((x+e)/(sqrt(2)*(80 / 2.355))))','StartPoint',CsPbBr3_starting_fit_coeffss);
bestfit_pluserror = fit(plottable_x,plottable_y+TFY_pump_probe_error./TFY_pump_probe_avg(y_max),'c*(a*exp(-(x+e)/b) + (1-a)*exp(-(x+e)/d))*(1/2)*(1+erf((x+e)/(sqrt(2)*(80 / 2.355))))','StartPoint',CsPbBr3_starting_fit_coeffss);
bestfit_minuserror = fit(plottable_x,plottable_y-TFY_pump_probe_error./TFY_pump_probe_avg(y_max),'c*(a*exp(-(x+e)/b) + (1-a)*exp(-(x+e)/d))*(1/2)*(1+erf((x+e)/(sqrt(2)*(80 / 2.355))))','StartPoint',CsPbBr3_starting_fit_coeffss);
disp(['Time constants are ',num2str(bestfit.b),'ps and ',num2str(bestfit.d*1e-3),'ns.']);
plot(bestfit,plottable_x,plottable_y,'.'); legend('TFY Laser ON - Laser OFF','Fitted Biexponential Decay');
hold on;
errorbar(plottable_x,plottable_y,TFY_pump_probe_error./TFY_pump_probe_avg(y_max),'.');%./TFY_pump_probe_avg(y_max)
% plot(plottable_x,plottable_y,'.');
hold off;
title([num2str(scandetails),' Average of ',num2str(counter),' scans']); xlabel('Time (picoseconds)'); ylabel('\Delta Fluorescence (A.U.)');
end
%% Plot the average time-resolved HERFD
if strcmp(scantype,'Spectrum') && (strcmp(edgetype,'files\pb') || strcmp(edgetype,'files/pb'))
figure(3);clf;hold on;
HERFD_sig_ON = average_data_table(:,detectorindices.HERFD_LaserON);
HERFD_sig_OFF = average_data_table(:,detectorindices.HERFD_LaserOFF);
% errorbar(nonzeros(final_x_values),-nonzeros(average_data_table(:,detectorindices.HERFD_LaserON)-average_data_table(:,detectorindices.HERFD_LaserOFF)),HERFD_pump_probe_error,'Linewidth',2);
plot(final_x_values(HERFD_pump_probe_avg~=0),nonzeros(HERFD_pump_probe_avg),'Linewidth',2);
plot(final_x_values(HERFD_sig_ON~=0),nonzeros(HERFD_sig_ON),'Linewidth',2);
plot(final_x_values(HERFD_sig_OFF~=0),nonzeros(HERFD_sig_OFF),'Linewidth',2);
title([num2str(scandetails),' Average of ',num2str(counter),' scans']); xlabel('Energy (keV)'); ylabel('Partial Fluorescence Yield (A.U.)');
legend('Time resolved HERFD','HERFD, Laser ON','HERFD, Laser OFF');
figure(4);clf;
hold off;
tfy_scaler=10;
plot(final_x_values(HERFD_pump_probe_avg~=0),smooth(nonzeros(HERFD_pump_probe_avg),1),final_x_values,tfy_scaler*TFY_pump_probe_avg,'Linewidth',2);
% errorbar(final_x_values(HERFD_pump_probe_avg~=0),nonzeros(HERFD_pump_probe_avg),HERFD_pump_probe_error(HERFD_pump_probe_avg~=0),'Linewidth',2);
legend('pump-probe HERFD',[num2str(tfy_scaler),' * pump-probe TFY']);title([scandetails,' ',sprintf('Average of %1.0f scans',counter)]); xlabel('Energy (keV)');
end
if discardedruns~=0 && photoncounting
disp(['Warning! ',num2str(discardedruns),' out of ',num2str(size(final_data_table,3)),' runs have been discarded in photon counting mode!'])
end