-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHABanalysis2.R
254 lines (201 loc) · 9.04 KB
/
HABanalysis2.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
#Hab analysis - regional and water year comparisons
library(tidyverse)
library(lme4)
library(lmerTest)
library(emmeans)
library(sf)
library(deltamapr)
library(visreg)
library(MASS)
library(car)
library(lubridate)
library(sfheaders)
library(ggsn)
#import data with all the visual index data
load("HABs.RData")
load("NewHABregions.RData")
#import shapefile with regions
#regions = st_read("data/HABregions.shp")
#
# DE = st_union(filter(regions, Stratum2 == "Franks"), filter(regions, Stratum2 == "OMR")) %>%
# dplyr::select(Stratum, Stratum2, nudge, colors) %>%
# sf_remove_holes() %>%
# mutate(Stratum2 = "OMR/Franks")
#
# AB = st_union(filter(regions, Stratum2 == "Cache/Liberty"), filter(regions, Stratum2 == "Upper Sac")) %>%
# dplyr::select(Stratum, Stratum2, nudge, colors) %>%
# sf_remove_holes() %>%
# mutate(Stratum2 = "North Delta")
#
# Newregions = bind_rows(AB, DE, regions) %>%
# filter(Stratum2 %in% c("OMR/Franks", "North Delta", "Lower SJ", "Lower Sac", "East Delta", "South Delta")) %>%
# rename(Region = Stratum2) %>%
# mutate(Stratum = NULL)
#save(Newregions, file = "NewHABregions.RData")
##################################################################
#check a few plots for outliers
# ggplot(HABs, aes(x = Temperature)) + geom_histogram()
# summary(HABs$Temperature)
# filter(HABs, Temperature <5)
# #missing 120 rows, and some of those are 0s, definitely wrong.
# HABs = filter(HABs, Temperature >5)
#
# ggplot(HABs, aes(x = Secchi)) + geom_histogram()
# summary(HABs$Secchi)
# test =filter(HABs, Secchi <10)
#
# group_by(HABs, Source) %>%
# summarize(secm = min(Secchi, na.rm = T), secM = max(Secchi, na.rm = T))
#
# #Ugh, definitely some more rows where Secchi is in meters, not centemeters. But its not consistent!
#
# HABs = mutate(HABs, Secchi = case_when(Secchi <5 ~Secchi *100,
# TRUE ~ Secchi))
# summary(HABs$Secchi)
# summary(HABs$Temperature)
#
# #Remove DOP data because it' scrap
#
# HABs = filter(HABs, Source != "DOP")
# save(HABs, file = "HABs.RData")
#convert HAB data to a spatial object and plot it
HABssf = filter(HABs, !is.na(Longitude), !is.na(Latitude)) %>%
mutate(Source = case_when(Source == "DWR_EMP" ~ "EMP",
Source == "DWR_NCRO" ~ "NCRO",
Source == "FMWTx" ~ "FMWT",
TRUE ~ Source)) %>%
st_as_sf(coords = c("Longitude", "Latitude"), crs = st_crs(4326))
############################################################################
###################################################################
#Now let's do the entire year, by regions
# (but just the regions we're interested in)
Habs2 = st_join(HABssf, Newregions) %>%
st_drop_geometry() %>%
filter(!is.na(Region), !is.na(Microcystis)) %>%
mutate(Year = year(Date), Yearf = as.factor(Year),
Month2 = factor(Month, levels = c(6,7,8,9,10),
labels = c("Jun", "Jul", "Aug", "Sep", "Oct")))
####################################################################################
#Models for HAB weed report
#This is the data for table 2-2
effort = group_by(Habs2, Year, Region) %>%
summarize(N = n()) %>%
pivot_wider(id_cols = Year, names_from = Region, values_from = N)
write.csv(effort, "outputs/visualindexeffort.csv")
##############################################################
#ordered logistic regression
HABs3 = Habs2 %>%
mutate(HABord = case_when(
Microcystis == 1 ~ "Absent",
Microcystis %in% c(2,3) ~ "Low",
Microcystis %in% c(4,5) ~ "High")) %>%
mutate(HABord = factor(HABord, levels = c("Absent", "Low", "High"), ordered = T))
Habs2 = mutate(Habs2, HABord = case_when(
Microcystis == 1 ~ "Absent",
Microcystis %in% c(2,3) ~ "Low",
Microcystis %in% c(4,5) ~ "High")) %>%
mutate(HABord = factor(HABord, levels = c("Absent", "Low", "High"), ordered = T)) %>%
filter(Year >2013) %>%
droplevels()
#now an orgered logistic regression
library(multcomp)
ord2 = polr(HABord ~Yearf + Region, data = Habs2, Hess = T)
summary(ord2)
Anova(ord2)
pairs = emmeans(ord2, pairwise ~ Yearf)
cont = pairs$contrasts
plot(emmeans(ord2, pairwise ~ Yearf), comparisons = TRUE)
tukcfg = cld(emmeans(ord2, pairwise ~ Yearf), Letters = letters) %>%
mutate(Year = as.numeric(as.character(Yearf)),
Letter = str_trim(.group))
tukcfg2 = cld(emmeans(ord2, pairwise ~ Region), Letters = letters) %>%
mutate(
Letter = str_trim(.group))
#this is table 2-11
Tuekyresults = bind_rows(tukcfg, tukcfg2)
#write.csv(Tuekyresults, "outputs/Pairwise_visualdata_July.csv")
#write.csv(pairs, "visualdata_alldelta_July.csv")
pr <- profile(ord2)
confint(pr)
plot(pr)
pairs(pr)
#This is figure 2-27
#Plot across the whole Delta, just summer/fall
ggplot(HABs3, aes(x = Year, fill = as.factor(Microcystis))) +
geom_bar(position = "fill", color = "grey")+
scale_fill_manual(values = c("white", "tan2", "yellow", "red", "darkred"),
labels = c("absent", "low", "medium", "high", "very high"),
name = "Microcystis")+ ylab("Relative Frequency") +
geom_text(data = tukcfg, aes(x = Year, y = 0.7, label = Letter), inherit.aes = F)+
geom_text(data = HABs3, aes(x = Year, y = 0.7, label = Yr_type), inherit.aes = F)
#ggsave("YearHAB.tiff", device = "tiff", width = 6, height = 5)
#Plot for paper with just three categories
#
yeartypes = read_csv("yearassignments.csv")
HABs3 = left_join(HABs3, yeartypes) %>%
mutate(Yr_type2 = factor(Yr_type, levels = c("Critical", "Dry", "Below Normal", "Wet"), labels = c("C", "D", "BN", "W"), ordered = T))
pal_yrtype <- c( "C" = "darkorange", "D" = "#53CC67", "BN" = "#009B95", "W" = "#481F70FF")
legendtitle = expression(atop(italic("Microcystis"), "Rating"))
ggplot(HABs3, aes(x = Year, fill = HABord)) +
geom_bar(position = "fill", color = "grey")+
scale_fill_manual(values = c("beige", "orange", "red"),
labels = c("absent", "low", "high"),
name = legendtitle)+ ylab("Relative Frequency") +
geom_text(aes(x = Year, y = 1.03, label = Yr_type2, color = Yr_type2))+
scale_color_manual(values = pal_yrtype, guide = NULL)+
scale_x_continuous(breaks = c(2008, 2010, 2012, 2014, 2016, 2018, 2020))+
annotate("text", x = 2014, y = 1.07, label = "Water Year Type")+
theme_bw()+theme(legend.title = element_text(hjust =0))
ggsave("plots/YearHAB_3cat.tiff", device = "tiff", width = 6, height = 5)
(ctable <- coef(summary(ord2)))
## calculate and store p values
p <- pnorm(abs(ctable[, "t value"]), lower.tail = FALSE) * 2
## combined table
#This is table 2-10
(ctable <- cbind(ctable, "p value" = p))
write.csv(ctable, "outputs/Visualindexmodel_Aug.csv")
(ci <- confint(ord2))
exp(cbind(OR = coef(ord2), ci))
###################################################
#Now we will do a seperate logistic regression for each region
HabMod = nest_by(Habs2, Region) %>%
mutate(mod = list(polr(HABord ~Yearf, data = data, Hess = T)),
pairs = list(emmeans(mod, pairwise ~ Yearf)),
CLD = list(cld(pairs, Letters = letters)))
#pairwise comparisons
RegTuk = summarize(HabMod, broom::tidy(CLD))%>%
mutate(Year = as.numeric(as.character(Yearf)),
Letter = str_trim(.group)) %>%
rename(emmean = estimate, std.erroremm = std.error)
regMod = summarize(HabMod, broom::tidy(mod)) %>%
mutate(Yearf = str_sub(term, start = 6, end = 9))
#table of coefficients
ctable <- summarize(HabMod, ctab = coef(summary(mod)),
p = pnorm(abs(ctab[, "t value"]), lower.tail = FALSE) * 2)
#Table for appendix A
regMod2 = left_join(regMod, RegTuk) %>%
bind_cols(ctable)
write.csv(regMod2, "outputs/regionalresults_noDOP.csv")
######################################################################################
#plots by year and region
#By Region, just summer/fall
#This is plot 2-28
ggplot(Habs2, aes(x = Year, fill = as.factor(Microcystis))) +
geom_bar(position = "fill", color = "grey")+ facet_wrap(~Region, nrow = 4)+
scale_fill_manual(values = c("white", "tan2", "yellow", "red", "darkred"),
labels = c("absent", "low", "medium", "high", "very high"),
name = "Microcystis")+ ylab("Relative Frequency") +
geom_text(data = RegTuk, aes(x = Year, y = 0.9, label = Letter), size = 4, inherit.aes = FALSE)+
theme_bw()+ theme(legend.position = "top", legend.key = element_rect(color = "black"))
ggsave("plots/RegionalHAB.tiff", device = "tiff", width = 6, height = 7)
#now with just three categories
ggplot(HABs3, aes(x = Year, fill = HABord)) +
geom_bar(position = "fill", color = "grey")+ facet_wrap(~Region, nrow = 4)+
scale_fill_manual(values = c("beige", "orange", "red"),
labels = c("absent", "low", "high"),
name = "Microcystis")+ ylab("Relative Frequency") +
geom_text(aes(x = Year, y = 0.97, label = Yr_type2, color = Yr_type2))+
scale_color_manual(values = pal_yrtype, guide = NULL)+
#geom_text(data = RegTuk, aes(x = Year, y = 0.9, label = Letter), size = 4, inherit.aes = FALSE)+
theme_bw()+ theme(legend.position = "top", legend.key = element_rect(color = "black"))
ggsave("plots/RegionalHAB_3cat.tiff", device = "tiff", width = 7, height = 7)