-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGraphs.R
199 lines (154 loc) · 8.18 KB
/
Graphs.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
#Visual index predictive model
#This pulls in the analyses from the HABsWeeds report and makes graphs for the HABs drought publication
library(tidyverse)
library(lme4)
library(lmerTest)
library(emmeans)
library(sf)
library(deltamapr)
library(brms)
library(DHARMa)
library(visreg)
library(MASS)
library(car)
library(DroughtData)
library(lubridate)
library(cmdstanr)
library(here)
load("MCmodels8jul2022.RData")
load("SoDelta.RData")
ggplot(SoDelta, aes(x = day, y = Temperature, color = Yearf)) + geom_point()+
ylab("Water Temperature, degrees C") + xlab("Day of the Year")
ggplot(SoDelta, aes(x = Temperature, y = Outflow, color = Yearf)) + geom_point()
ggplot(SoDelta, aes(x = Temperature, y = Export, color = Yearf)) + geom_point()
ggplot(SoDelta, aes(x = Secchi, y = Outflow, color = Yearf)) + geom_point()
ggplot(SoDelta, aes(x = Secchi, y = Export, color = Yearf)) + geom_point()
summary(M5.61)
pp_check(M5.61)
cex5.61 = conditional_effects(M5.61, categorical = TRUE)
cex5.61
#nice table of effects for the paper
foo = summary(M5.61)
test = bind_rows(foo$fixed, foo$random$Yearf, foo$random$day) %>%
mutate(Terms = rownames(.), Terms = case_when(Terms == "sd(Intercept)...6" ~ "Year",
Terms == "sd(Intercept)...7" ~ "Day of Year",
TRUE~ Terms))
test2 = mutate(test, Estimate2 = case_when(Terms == "Exscale" ~ Estimate*0.0283168,
TRUE ~ Estimate))
write.csv(test, "MicroModel.csv")
#erg. I may want to unscale the variables and convert CFS to CMS
test = mutate(test, case_when())
# I want prettier plots of the conditional effects
# These are plots 2-31, 2-32, and 2-33
#I should write a function for thsi.
#plot temperature effect
temp = cex5.61$`Tempscale:cats__`
lm = lm(Temperature ~Tempscale, data = SoDelta)
foo = as.data.frame(summary(lm)$coefficients)
newdata = data.frame(Tempscale = c(-2,0,2))
newdata = mutate(temp, Temperature = Tempscale*foo$Estimate[2] + foo$Estimate[1])
xlab <- "Temperature (°C)"
ptemp = ggplot(filter(newdata), aes(x = Temperature, y = estimate__)) +
geom_ribbon(aes(ymin = lower__, ymax = upper__, fill = cats__), alpha = 0.3)+
geom_line(aes(color = cats__))+
scale_fill_manual(values = c("blue", "orange", "red"),
labels = c("Absent", "Low", "High"), name = "Microcystis")+
scale_color_manual(values = c("blue", "orange", "red"),
labels = c("Absent", "Low", "High"), name = "Microcystis")+
# scale_fill_manual(values = c("orange", "red"),
# labels = c("Low", "High"), name = "Microcystis")+
# scale_color_manual(values = c("orange", "red"),
# labels = c("Low", "High"), name = "Microcystis")+
xlab(xlab)+
ylab("Probability")+
geom_vline(xintercept = mean(filter(SoDeltasum, Yearf == '2021', Month2 == "Jul")$Temperature),
linetype = 2)+
annotate("text", x = 23.8, y = 0.5, angle = 90, label = "Mean Jul 2021")+
annotate("text", x = 20.8, y = 0.9, label = "A", size = 15)+
theme_bw()+
theme(legend.title = element_text(face = "italic"), legend.position = "top")
#ggsave("plots/MicTemp_aug.tiff", device = "tiff", width = 6, height = 4, units = "in")
ex = cex5.61$`Exscale:cats__`
lmE = lm(EXPORTS ~Exscale, data = SoDelta)
fooE = as.data.frame(summary(lmE)$coefficients)
newdataE = mutate(ex, Exports = Exscale*fooE$Estimate[2] + fooE$Estimate[1])
xlabCMS = expression(paste(
"Project Exports (",
m^3, "/sec)", sep=""))
pex = ggplot(filter(newdataE), aes(x = Exports, y = estimate__)) +
geom_ribbon(aes(ymin = lower__, ymax = upper__, fill = cats__), alpha = 0.3)+
geom_line(aes(color = cats__))+
scale_fill_manual(values = c("blue", "orange", "red"),
labels = c("Absent", "Low", "High"), name = "Microcystis")+
scale_color_manual(values = c("blue", "orange", "red"),
labels = c("Absent", "Low", "High"), name = "Microcystis")+
#scale_fill_manual(values = c("orange", "red"),
# labels = c("Low", "High"), name = "Microcystis")+
#scale_color_manual(values = c("orange", "red"),
# labels = c("Low", "High"), name = "Microcystis")+
xlab(xlabCMS)+
ylab("Probability")+
coord_cartesian(ylim = c(0,1))+
geom_vline(xintercept = 36.8, linetype = 2)+
annotate("text", x = 50, y = 0.9, label = "B", size = 15)+
annotate("text", x = 30, y = 0.4, label = "TUCP Export Limit", angle = 90)+
theme_bw()+
theme(legend.title = element_text(face = "italic"), legend.position = "none")
#ggsave("plots/MicExports_augCMS.tiff", device = "tiff", width = 6, height = 4, units = "in")
turb = cex5.61$`Secchs:cats__`
lmS = lm(Secchi ~Secchs, data = SoDelta)
fooS = as.data.frame(summary(lmS)$coefficients)
newdataS = mutate(turb, Secchi = Secchs*fooS$Estimate[2] + fooS$Estimate[1])
pturb = ggplot(filter(newdataS), aes(x = Secchi, y = estimate__)) +
geom_ribbon(aes(ymin = lower__, ymax = upper__, fill = cats__), alpha = 0.3)+
geom_line(aes(color = cats__))+
scale_fill_manual(values = c("blue", "orange", "red"),
labels = c("Absent", "Low", "High"), name = "Microcystis")+
scale_color_manual(values = c("blue", "orange", "red"),
labels = c("Absent", "Low", "High"), name = "Microcystis")+
# scale_fill_manual(values = c("orange", "red"),
# labels = c("Low", "High"), name = "Microcystis")+
# scale_color_manual(values = c("orange", "red"),
# labels = c("Low", "High"), name = "Microcystis")+
xlab("Secchi Depth (cm)")+
ylab("Probability")+
coord_cartesian(ylim = c(0,1))+
geom_vline(xintercept = mean(filter(SoDeltasum, Yearf == '2021', Month2 == "Jul")$Secchi),
linetype = 2)+
annotate("text", x = 95, y = 0.5, angle = 90, label = "Mean Jul 2021")+
annotate("text", x = 40, y = 0.9, label = "C", size = 15)+
theme_bw()+
theme(legend.title = element_text(face = "italic"), legend.position = "none")
#ggsave("plots/MicSecchi_aug.tiff", device = "tiff", width = 6, height = 4, units = "in")
library(gridExtra)
plots = grid.arrange(grobs = list(ptemp, pex, pturb), nrow = 3, heights = c(1.1, 1, 1))
ggsave("plots/CombinedMicPredictions.tiff", plot = plots, device = "tiff", width = 6, height = 12, units = "in")
#########################################################################################
#now let's see how changing exports and stuff will change microcystis
ex2 = data.frame(Scenario = c(1500, 3000, 6000)) %>%
mutate(scaled = (Scenario-fooE$Estimate[1])/fooE$Estimate[2])
newdata2e = data.frame(Exscale = rep(ex2$scaled[1], 4), Outscale = rep(-.647, 4),
Tempscale = filter(SoDeltasum, Yearf == '2021')$Tempscale,
Secchs = filter(SoDeltasum, Yearf == '2021')$Secchs,
day = c(165,190, 224, 252), Yearf = "2021", Scenario = "1500 CFS")
newdata3e = data.frame(Exscale = rep(ex2$scaled[2], 4), Outscale = rep(-.647, 4),
Tempscale = filter(SoDeltasum, Yearf == '2021')$Tempscale,
Secchs = filter(SoDeltasum, Yearf == '2021')$Secchs,
day = c(165,190, 224, 252), Yearf = "2021", Scenario = "3000 CFS")
newdata4e = data.frame(Exscale = rep(ex2$scaled[3], 4), Outscale = rep(-.647, 4),
Tempscale = filter(SoDeltasum, Yearf == '2021')$Tempscale,
Secchs = filter(SoDeltasum, Yearf == '2021')$Secchs,
day = c(165,190, 224, 252), Yearf = "2021", Scenario = "6000 CFS")
allnewe = bind_rows(newdata2e, newdata3e, newdata4e )
library(tidybayes)
Predictionse = add_epred_draws(allnewe, M5.61)%>%
median_qi(.epred)
ggplot(filter(Predictionse), aes(x = as.factor(day), y = .epred, fill = Scenario)) +
geom_col(position = "dodge") +
geom_errorbar(aes(ymin = .lower, ymax = .upper, group = Scenario), position = "dodge")+
facet_wrap(~.category)+
scale_fill_manual(values = c("grey", "darkgreen", "lightblue"), name = "Export Scenario")+
scale_x_discrete(labels = c("June", "July", "August", "Sept"), name = "Month")+
theme_bw()+ylab("Probability")
diffe = group_by(Predictionse, .category, day) %>%
summarize(Diff1 = .epred[1]-.epred[2], Diff2 = .epred[2]-.epred[3], Diff3 = .epred[1]-.epred[3])