forked from jade0520/Feature_Extraction_OpenSmile
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcsvs_to_N_fold_pickles_labels.py
168 lines (134 loc) · 6.01 KB
/
csvs_to_N_fold_pickles_labels.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
# one / five / ten fold
# speaker independent / dependent
"""
{id : {label1: , label2: , ...}}
# 세션별 성별 불러오기
# 라벨 얻기
## Arousal : reg, cat
## Valence : reg, cat
## Script
## Categorical
## Dominance: reg, cat
## gender
## id
# 라벨 이름을 key로 하여 dict 저장
"""
import numpy as np
import os
import sys
import copy
import math
import pickle
from tool.helper import *
from tool.folds import get_fold_speaker_independet, get_fold_speaker_dependent
import argparse
parser = argparse.ArgumentParser(description='get pickle for featues')
parser.add_argument('--IEMOCAP_dir', type=str, help='<Required> Set path to "/IEMOCAP_full_release/"', default = './IEMOCAP_full_release/', required=True)
parser.add_argument('--pickle_dir', type=str, help='<Required> Set path to save pickle files', default = './jars', required=True)
parser.add_argument('--N_fold', type=int, help='<Required> Set fold number (int)', default = 10, required=True)
parser.add_argument('--speaker_dpendency', action='store_true')
parser.add_argument('--no_speaker_dpendency', dest='speaker_dpendency', action='store_false')
parser.set_defaults(speaker_dpendency=True)
args = parser.parse_args()
# Labels
emotions_used = {'hap':0, 'exc':0, 'ang':1, 'sad':2, 'neu':3} # Categorical with four emotions
emotions_count = [0,0,0,0]
dim_counts = {'A':{}, 'V':{}, 'D':{}}
sessions = ['Session1', 'Session2', 'Session3', 'Session4','Session5']
dataset = {}
for session in sessions:
# collect all data from sessions
path_to_wav = args.IEMOCAP_dir + session + '/sentences/wav/'
path_to_emotions = args.IEMOCAP_dir + session + '/dialog/EmoEvaluation/'
path_to_transcriptions = args.IEMOCAP_dir + session + '/dialog/transcriptions/'
idfolders = os.listdir(path_to_wav)
files = []
transcriptions, emotions = {}, {}
len_files = 0
for idfolder in idfolders:
newpath_to_wav = path_to_wav
newpath_to_wav += idfolder
# wav list 따기
files_ = os.listdir(newpath_to_wav)
for f in files_:
# 파일 이름 받기
if f.endswith(".wav"):
if f[0] == '.':
files.append(f[2:-4])
else:
files.append(f[:-4])
# wav list 를 key로 하는 dictionary 생성
transcriptions.update(get_transcriptions(path_to_transcriptions, idfolder + '.txt')) # helper
emotions.update(get_emotions(path_to_emotions, idfolder + '.txt')) # 딕셔너리 리스트 [{},{}, {}]
len_files += len(files_)
#print(emotions['Ses01F_impro02_M013'])
#print("len_files", len_files, "transcriptions", len(transcriptions), "emotions", len(emotions)) #1819
trans_keys = transcriptions.keys()
except_keys = list(set(files) ^ set(trans_keys))
if len(except_keys):
for key in except_keys:
del(transcriptions[key])
#print(">> len_files", len_files, "transcriptions", len(transcriptions), "emotions", len(emotions)) #1819
# transcription 지우기
for id_ in files:
# id 하나씩 꺼내기
datum = {}
datum["Script"] = transcriptions[id_] # tasks_name_dict와 통일 필요!!
# 4가지 감정만 담음
try :
emo = emotions_used[emotions[id_]["emotion"]]
datum["Categorical"] = emo
emotions_count[emo] += 1
except : continue
datum["Arousal_cat"] = turnTo_3level(emotions[id_]["a"])
datum["Valence_cat"] = turnTo_3level(emotions[id_]["v"])
datum["Dominance_cat"] = turnTo_3level(emotions[id_]["d"])
datum["Arousal_reg"] = emotions[id_]["a"]
datum["Valence_reg"] = emotions[id_]["v"]
datum["Dominance_reg"] = emotions[id_]["d"]
gen = get_gender(id_) # gender 0,1 = M,W
datum["Gender"] = gen
datum["ID"] = get_ID(id_) # id 0~9 -> fold num
dataset[id_] = datum
# Count
try:
dim_counts['A'][str(datum["Arousal_reg"])] += 1
except:
dim_counts['A'][str(datum["Arousal_reg"])] = 0
try:
dim_counts['V'][str(datum["Valence_reg"])] += 1
except:
dim_counts['V'][str(datum["Valence_reg"])] = 0
try:
dim_counts['D'][str(datum["Dominance_reg"])] += 1
except:
dim_counts['D'][str(datum["Dominance_reg"])] = 0
#print("dataset", len(dataset))
#print("dataset[\"Ses01F_impro02_M013\"]", dataset["Ses01F_impro02_M013"])
#print("emotions_count",emotions_count)
#print("dim counts : {}".format(dim_counts))
# divide amount for each fold
print(args.N_fold, "fold startedgy, dependency:", args.speaker_dpendency)
id_keys = list(dataset.keys())
fold_keysNnames = get_fold_speaker_dependent(id_keys, args.N_fold) if args.speaker_dpendency else get_fold_speaker_independet(id_keys, N_fold)
# fold_keysNnames : [(fold1_key_list, fold1_name), ..., (foldN_key_list, foldN_name) )]
for key_list, name in fold_keysNnames:
print("fold", name, ":", len(key_list))
# create directory for pikles
N_fold_path = args.pickle_dir + str(args.N_fold) + "fold"
N_fold_path += "_D/" if args.speaker_dpendency else "_I/"
if not os.path.exists(N_fold_path):
os.makedirs(N_fold_path)
for fold_key_list, fold_name in fold_keysNnames:
fold_dataset = {}
for key in fold_key_list:
fold_dataset[key] = dataset[key]
file_name = N_fold_path+"label_"+ fold_name +".pickle"
with open(file_name, 'wb') as handle:
pickle.dump(fold_dataset, handle, protocol=pickle.HIGHEST_PROTOCOL)
"""
>>> f = open('/home/jyseo/SER_FE/SER_2022/features/jars/10fold/label_0.pickle','rb')
>>> label_dataset = pickle.load(f, encoding="latin1")
>>> label_dataset['Ses02F_script02_2_F005']
{'Script': "God damn it, Augie, don't ask me that. I hate it when you ask me that. You always ask me that. It's insulting.", 'Categorical': 1, 'Arousal_cat': 2, 'Valence_cat': 0, 'Dominance_cat': 2, 'Arousal_reg': 4.5, 'Valence_reg': 1.5, 'Dominance_reg': 4.5, 'Gender': 1, 'ID': 3}
"""