diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml index e0de92c..af1f6b6 100644 --- a/.pre-commit-config.yaml +++ b/.pre-commit-config.yaml @@ -27,6 +27,7 @@ repos: rev: "v1.10.0" hooks: - id: mypy + additional_dependencies: ["types-toml"] - repo: https://github.com/igorshubovych/markdownlint-cli rev: v0.40.0 hooks: diff --git a/bubble_analyser/__main__.py b/bubble_analyser/__main__.py index 495fd02..fd29cb7 100644 --- a/bubble_analyser/__main__.py +++ b/bubble_analyser/__main__.py @@ -1 +1,6 @@ """The entry point for the Bubble Analyser program.""" + +from .default import default + +if __name__ == "__main__": + default() diff --git a/bubble_analyser/background_subtraction_threshold.py b/bubble_analyser/background_subtraction_threshold.py new file mode 100644 index 0000000..12b84ac --- /dev/null +++ b/bubble_analyser/background_subtraction_threshold.py @@ -0,0 +1,107 @@ +"""Background Subtraction and Thresholding: Isolate objects from backgrounds. + +This module provides tools for image preprocessing including grayscale conversion, +background subtraction, and thresholding. It is designed to handle images where objects +of interest need to be isolated from their backgrounds for further analysis. + +Functions: + convert_grayscale(image): Converts a color image to grayscale. + + background_subtraction(target_img, background_img): Subtracts the background image + from the target image to highlight differences. + + threshold(difference_img, threshold_value): Applies a binary threshold to an image + to create a binary mask. + + background_subtraction_threshold(target_img, background_img, threshold_value): + Combines background subtraction and thresholding to isolate objects of interest in + an image. + +These functions are used to preprocess images for applications such as object detection, +where isolating the changes between images or from a background is necessary. Each +function is designed to be modular, allowing them to be used independently or in +sequence depending on the requirements of the task. +""" + +from typing import cast + +import cv2 +import numpy as np +from numpy import typing as npt + + +def convert_grayscale(image: npt.NDArray[np.int_]) -> npt.NDArray[np.int_]: + """Converts an image to grayscale. + + Args: + image (npt.NDArray): The input image to be converted. + + Returns: + npt.NDArray: The converted image in grayscale. + """ + if len(image.shape) == 3: + image = cast(npt.NDArray[np.int_], cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)) + return image + + +def background_subtraction( + target_img: npt.NDArray[np.int_], background_img: npt.NDArray[np.int_] +) -> npt.NDArray[np.int_]: + """Performs background subtraction on two images. + + Args: + target_img (npt.NDArray): The target image where the objects of interest are + located. + background_img (npt.NDArray): The background image (without object of interest). + + Returns: + npt.NDArray: The difference image after background subtraction. + """ + difference_img = cv2.absdiff(target_img, background_img) + return cast(npt.NDArray[np.int_], difference_img) + + +def threshold( + difference_img: npt.NDArray[np.int_], threshold_value: float +) -> npt.NDArray[np.bool_]: + """Applies a binary threshold to the given difference image. + + Args: + difference_img (npt.NDArray): The input difference image to be thresholded. + threshold_value (int): The threshold value to apply to the difference image. + + Returns: + npt.NDArray: The thresholded image. + """ + _, thresholded_img = cv2.threshold( + difference_img, threshold_value, 255, cv2.THRESH_BINARY + ) + return cast(npt.NDArray[np.bool_], thresholded_img) + + +def background_subtraction_threshold( + target_img: npt.NDArray[np.int_], + background_img: npt.NDArray[np.int_], + threshold_value: float, +) -> npt.NDArray[np.bool_]: + """Perform background subtraction and apply thresholding. + + Args: + target_img: The target image where the objects of interest are located. + background_img: The background image (without objects of interest). + threshold_value: The threshold value to apply after background subtraction. + + Returns: + A binary image with the objects of interest isolated. + """ + # Ensure both images are in grayscale + target_img = convert_grayscale(target_img) + background_img = convert_grayscale(background_img) + + # Subtract the background image from the target image + difference_img = background_subtraction(target_img, background_img) + + # Apply a threshold to the difference image + thresholded_img = threshold(difference_img, threshold_value) + + return thresholded_img diff --git a/bubble_analyser/calculate_circle_properties.py b/bubble_analyser/calculate_circle_properties.py new file mode 100644 index 0000000..9272c0a --- /dev/null +++ b/bubble_analyser/calculate_circle_properties.py @@ -0,0 +1,83 @@ +"""Calculate Circle Properties. + +This module contains functions for calculating geometric properties of regions +identified in an image. It is particularly focused on regions that are labeled in terms +of their circularity attributes. + +The `calculate_circle_properties` function evaluates the geometric features of labeled +regions within an image, which have been identified as separate entities, often through +a segmentation process. It measures various properties related to the shape and size of +the regions, adjusted to real-world dimensions using a provided pixel-to-centimeter +conversion ratio. + +Function: + calculate_circle_properties(labels, px2cm): Computes area, equivalent diameter, + eccentricity, solidity, and circularity for each labeled region. + +Each computed property is defined as follows: +- Area: Total area of the region converted from pixels to square centimeters. +- Equivalent diameter: Diameter of a circle with the equivalent area as the region, + provided in centimeters. +- Eccentricity: Measure of the deviation of the region from a perfect circle, where + 0 indicates a perfect circle and values closer to 1 indicate elongated shapes. +- Solidity: Ratio of the region's area to the area of its convex hull, indicating + the compactness of the shape. +- Circularity: A value that describes how closely the shape of the region approaches + that of a perfect circle, calculated from the area and the perimeter. + +The function returns a list of dictionaries, with each dictionary holding the properties +for a specific region, facilitating easy access and manipulation of these metrics in +subsequent analysis or reporting stages. +""" + +import numpy as np +from numpy import typing as npt +from skimage import measure + + +def calculate_circle_properties( + labels: npt.NDArray[np.int_], px2cm: float +) -> list[dict[str, float]]: + """Calculate geometric properties of labeled regions in an image. + + This function computes various properties that describe the "circularity" of regions + within the labeled image, such as area, equivalent diameter, eccentricity, solidity, + and circularity. These properties are calculated in centimeters based on the + provided pixel-to-centimeter ratio. + + Args: + labels: A labeled image where each distinct region (or "circle") is represented + by unique labels. + px2cm: The ratio of centimeters per pixel, used to convert measurements from + pixels to centimeters. + + Returns: + A list of dictionaries, each containing the following properties for a region: + - area: The area of the region in square centimeters. + - equivalent_diameter: The diameter of a circle with the same area as the region + , in centimeters. + - eccentricity: The eccentricity of the ellipse that has the same second-moments + as the region. + - solidity: The proportion of the pixels in the convex hull that are also in the + region. + - circularity: A measure of how close the shape is to a perfect circle, + calculated using the perimeter and area. + """ + properties = measure.regionprops(labels) + circle_properties = [] + for prop in properties: + area = prop.area * (px2cm**2) + equivalent_diameter = prop.equivalent_diameter * px2cm + eccentricity = prop.eccentricity + solidity = prop.solidity + circularity = (4 * np.pi * area) / (prop.perimeter * px2cm) ** 2 + circle_properties.append( + { + "area": area, + "equivalent_diameter": equivalent_diameter, + "eccentricity": eccentricity, + "solidity": solidity, + "circularity": circularity, + } + ) + return circle_properties diff --git a/bubble_analyser/calculate_px2cm.py b/bubble_analyser/calculate_px2cm.py new file mode 100644 index 0000000..f0ad7fa --- /dev/null +++ b/bubble_analyser/calculate_px2cm.py @@ -0,0 +1,203 @@ +"""Bubble Analyser: Image Processing for Circular Feature Detection. + +This module provides a suite of tools for image manipulation and measurement calibration +using computer vision techniques. It includes functions to resize images, draw on images +interactively, and calculate real-world measurements from pixels. + +The functions in this module utilize OpenCV and NumPy to perform tasks such as image +resizing, interactive line drawing for measurement marking, pixel distance calculations, +and conversionfrom pixel measurements to real-world units (e.g., centimeters). These +capabilities are particularly useful in applications where precision in spatial +measurements is required, such as in quality control, materials science, and medical +imaging. + +Key Functions: +- resize_to_target_width(image, target_width): Resizes an image to a specified target + width while maintaining the aspect ratio. +- draw_line(event, x, y, flags, param): A callback function that allows interactive line + drawing on an image displayed in an OpenCV window. +- get_pixel_distance(img): Displays an image and allows the user to draw a line, then + calculates the pixel distance between the endpoints of the line. +- get_cm_per_pixel(pixel_distance, scale_percent, img_resample): Calculates the + conversion ratio from pixels to centimeters, taking into account any image resizing + that has been applied. +- calculate_px2cm(image_path, img_resample): Orchestrates the process of loading an + image, resizing it, allowing the user to mark a measurement, and calculating a + pixel-to-centimeter conversion factor. + +Each function is designed to be modular, allowing for flexible integration into broader +image processing and analysis workflows. The module facilitates the extraction of +quantitative data from images, which can be critical for applications requiring detailed +spatial analysis. +""" + +from pathlib import Path +from typing import cast + +import cv2 +import numpy as np +import numpy.typing as npt + +from .image_preprocess import load_image + + +def resize_to_target_width( + image: npt.NDArray[np.int_], target_width: int = 1000 +) -> tuple[npt.NDArray[np.int_], float]: + """Resizes an image to a specified target width while maintaining the aspect ratio. + + Args: + image (npt.npt.NDArray[np.int_]): The input image to be resized. + target_width (int, optional): The desired width of the resized image. Defaults + to 1000. + + Returns: + npt.npt.NDArray[np.int_]: The resized image. + scale_percent: The scaling percentage applied to the image during resizing. + """ + # Scale down the image to a width of 1000 pixels, keeping the aspect ratio the same + scale_percent: float = ( + target_width / image.shape[1] + ) # Calculate the scale percent to make width 1000 + width: int = target_width # Set the new width to 1000 pixels + height: int = int( + image.shape[0] * scale_percent + ) # Adjust the height to maintain the aspect ratio + dim: tuple[int, int] = (width, height) # Define the new dimensions + image_resized = cv2.resize( + image, dim, interpolation=cv2.INTER_AREA + ) # Resize the image + + return cast(npt.NDArray[np.int_], image_resized), scale_percent + + +def draw_line(event: int, x: int, y: int, flags: int, param: dict[str, object]) -> None: + """Callback function to draw a line on the image. + + This function is used as a mouse callback to allow the user to draw a line on the + image. + + Args: + event: The type of mouse event (e.g., left button down, mouse move, left button + up). + x: The x-coordinate of the mouse event. + y: The y-coordinate of the mouse event. + flags: Any relevant flags passed by OpenCV. + param: A dictionary containing reference points and drawing state. + """ + refPt = cast(list[tuple[int, int]], param["refPt"]) + img = cast(npt.NDArray[np.uint8], param["img"]) + img_copy = cast(npt.NDArray[np.uint8], param["img_copy"]) + + if event == cv2.EVENT_LBUTTONDOWN: + refPt.append((x, y)) + param["drawing"] = True + + elif event == cv2.EVENT_MOUSEMOVE: + if param["drawing"]: + img_copy[:] = img[:] # Reset to the original image before drawing the line + cv2.line(img_copy, refPt[0], (x, y), (0, 255, 0), 2) + cv2.imshow("image", img_copy) + + elif event == cv2.EVENT_LBUTTONUP: + refPt.append((x, y)) + param["drawing"] = False + cv2.line(img, refPt[0], refPt[1], (0, 255, 0), 2) + cv2.imshow("image", img) + + +def get_pixel_distance(img: npt.NDArray[np.int_]) -> float: + """Display the image and allow the user to draw a line representing 1 cm. + + This function uses OpenCV to display the image and capture the user input + for drawing a line that represents 1 cm on the ruler. It calculates the + Euclidean distance between the two points of the line in pixels. + + Args: + img: The image on which the user will draw a line. + + Returns: + The distance in pixels between the two drawn points. Returns 0 if the + line was not drawn correctly. + """ + refPt: list[tuple[int, int]] = [] + drawing: bool = False + img_copy: npt.NDArray[np.int_] = img.copy() + + cv2.namedWindow("image") + cv2.setMouseCallback( + "image", + draw_line, # type: ignore + {"refPt": refPt, "drawing": drawing, "img": img, "img_copy": img_copy}, + ) + + print( + "Draw a line representing 1 cm according to the ruler's scaling in the image." + ) + + while True: + cv2.imshow("image", img_copy) + key: int = cv2.waitKey(1) & 0xFF + if key == ord("q"): + break + + cv2.destroyAllWindows() + + if len(refPt) == 2: + pixel_distance: float = np.sqrt( + (refPt[1][0] - refPt[0][0]) ** 2 + (refPt[1][1] - refPt[0][1]) ** 2 + ) + return pixel_distance + else: + print("Line was not drawn correctly.") + return 0.0 + + +def get_cm_per_pixel( + pixel_distance: float, scale_percent: float, img_resample: float +) -> float: + """Calculate the conversion ratio from pixels to centimeters. + + Args: + pixel_distance: The distance in pixels between the two drawn points. + scale_percent: The scaling percentage applied to the image during resizing. + img_resample: The resampling factor applied to the original target and + background image. + + Returns: + The conversion factor in centimeters per pixel, corrected for the resampling + applied to the original image. + """ + original_pixel_distance: float = pixel_distance / scale_percent + cm_per_pixel: float = 1.0 / original_pixel_distance + cm_per_pixel = cm_per_pixel / img_resample + return cm_per_pixel + + +def calculate_px2cm(image_path: Path, img_resample: float) -> float: + """Calculates the conversion factor from pixels to centimeters. + + This function reads an image of a ruler, allows the user to draw a line + correspondingnto 1 cm on the ruler, and calculates the pixel-to-centimeter + conversion factor. The image is scaled down for easier interaction, but the final + calculation accounts forthis scaling as well as the resample factor for target and + background images to ensure accuracy relative to the original image size. + + Args: + image_path (str): The path to the image file. + img_resample (float): The resampling factor applied to the original target and + background image. + + Returns: + float: The conversion factor in centimeters per pixel, corrected for the + resampling applied to the original image. + """ + image = load_image(image_path) + image, scale_percent = resize_to_target_width(image) + pixel_distance: float = get_pixel_distance(image) + if pixel_distance > 0: + cm_per_pixel: float = get_cm_per_pixel( + pixel_distance, scale_percent, img_resample + ) + print(f"Conversion factor: {cm_per_pixel} cm per pixel") + return cm_per_pixel diff --git a/bubble_analyser/config.py b/bubble_analyser/config.py new file mode 100644 index 0000000..9f6dbee --- /dev/null +++ b/bubble_analyser/config.py @@ -0,0 +1,273 @@ +"""This module defines the configuration parameters for the Bubble Analyser project. + +The `Config` class is a Pydantic model that validates and manages the configuration +parameters used in the image processing and analysis routines. These parameters +include morphological element sizes, connectivity, marker size, image resampling +factors, and more. The class also includes methods to validate the ranges of these +parameters, ensuring that they are logically consistent before being used in the +processing algorithms. + +Classes: + Config: A Pydantic model for storing and validating configuration parameters. + +Methods: + check_morphological_element_size_range: Validates the morphological element size + range. + check_connectivity_range: Validates the connectivity range. + check_marker_size_range: Validates the marker size range. + check_resample_range: Validates the resample range. + check_max_eccentricity_range: Validates the maximum eccentricity range. + check_min_solidity_range: Validates the minimum solidity range. + check_min_size_range: Validates the minimum size range. +""" + +from pathlib import Path + +import typing_extensions +from pydantic import ( + BaseModel, + PositiveFloat, + PositiveInt, + StrictBool, + StrictFloat, + model_validator, +) + + +class Config(BaseModel): # type: ignore + """A Pydantic model for storing and validating configuration parameters. + + The class contains parameters for image processing and analysis, such as + morphological element sizes, connectivity, marker size, image resampling + factors, maximum eccentricity, and more. The class also includes methods to + validate the ranges of these parameters, ensuring that they are logically + consistent before being used in the processing algorithms. + # Morphological element used for binary operations, e.g. opening, closing, etc. + Morphological_element_size: PositiveInt + Morphological_element_size_range: tuple[PositiveInt, PositiveInt] + + Attributes: + Morphological_element_size: PositiveInt + Morphological_element_size_range: tuple[PositiveInt, PositiveInt] + Connectivity: PositiveInt + Connectivity_range: tuple[PositiveInt, PositiveInt] + Marker_size: PositiveInt + Marker_size_range: tuple[PositiveInt, PositiveInt] + resample: PositiveFloat + resample_range: tuple[PositiveFloat, PositiveFloat] + Max_Eccentricity: PositiveFloat + Max_Eccentricity_range: tuple[PositiveFloat, PositiveFloat] + Min_Solidity: PositiveFloat + Min_Solidity_range: tuple[PositiveFloat, PositiveFloat] + min_size: StrictFloat + min_size_range: tuple[StrictFloat, StrictFloat] + px2mm: PositiveFloat + target_img_path: Path + background_img_path: Path + threshold_value: PositiveFloat + ruler_img_path: Path + do_batch: StrictBool + """ + + # Default PARAMETERS + + # Morphological element used for binary operations, e.g. opening, closing, etc. + Morphological_element_size: PositiveInt + Morphological_element_size_range: tuple[PositiveInt, PositiveInt] + + # Connectivity used, use 4 or 8 + Connectivity: PositiveInt + Connectivity_range: tuple[PositiveInt, PositiveInt] + + # Marker size for watershed segmentation + Marker_size: PositiveInt + Marker_size_range: tuple[PositiveInt, PositiveInt] + + # Images can be resampled to make processing faster + resample: PositiveFloat + resample_range: tuple[PositiveFloat, PositiveFloat] + + # Reject abnormal bubbles from quantification. E>0.85 or S<0.9 + Max_Eccentricity: PositiveFloat + Max_Eccentricity_range: tuple[PositiveFloat, PositiveFloat] + Min_Solidity: PositiveFloat + Min_Solidity_range: tuple[PositiveFloat, PositiveFloat] + + # Also ignore too small bubbles (equivalent diameter in mm) + min_size: StrictFloat + min_size_range: tuple[StrictFloat, StrictFloat] + + # User input Image resolution + px2mm: PositiveFloat + + # Path for Target image + target_img_path: Path + + # Path for Background image + background_img_path: Path + + # Threshold value for background subtraction + threshold_value: PositiveFloat + + # Path for Ruler image + ruler_img_path: Path + + # Batch processing flag + do_batch: StrictBool + + @model_validator(mode="after") + def check_morphological_element_size_range(self) -> typing_extensions.Self: + """Validates the morphological element size range. + + Ensures that the lower bound of the range is less than the upper bound. + If the bounds are in the wrong order, a ValueError is raised. + + Returns: + Self: The instance itself, for method chaining. + """ + low, high = self.Morphological_element_size_range + # Check if the lower bound is less than the upper bound + if low >= high: + # Raise a ValueError if the bounds are in the wrong order + raise ValueError( + "Limits for the Morphological_element_size_range are in the wrong order" + ) + return self + + @model_validator(mode="after") + def check_connectivity_range(self) -> typing_extensions.Self: + """Validates the connectivity range. + + Ensures that the lower bound of the range is less than the upper bound. + If the bounds are in the wrong order, a ValueError is raised. + + Returns: + Self: The instance itself, for method chaining. + """ + low, high = self.Connectivity_range + # Check if the lower bound is less than the upper bound + if low >= high: + # Raise a ValueError if the bounds are in the wrong order + raise ValueError("Limits for the Connectivity_range are in the wrong order") + return self + + @model_validator(mode="after") + def check_marker_size_range(self) -> typing_extensions.Self: + """Validates the marker size range. + + Ensures that the lower bound of the range is less than the upper bound. + If the bounds are in the wrong order, a ValueError is raised. + + Returns: + Self: The instance itself, for method chaining. + """ + # Get the lower and upper bounds of the marker size range + low, high = self.Marker_size_range + + # Check if the lower bound is less than the upper bound + if low >= high: + # Raise a ValueError if the bounds are in the wrong order + raise ValueError("Limits for the Marker_size_range are in the wrong order") + + # Return the instance itself for method chaining + return self + + @model_validator(mode="after") + def check_resample_range(self) -> typing_extensions.Self: + """Validates the resample range. + + Ensures that the lower bound of the range is less than the upper bound. + If the bounds are in the wrong order (lower bound >= upper bound), a ValueError + is raised. + + Returns: + Self: The instance itself, for method chaining. + + Raises: + ValueError: If the lower bound is greater than or equal to the upper bound. + """ + # Get the lower and upper bounds of the resample range + low, high = self.resample_range + + # Check if the lower bound is less than the upper bound + if low >= high: + # Raise a ValueError if the bounds are in the wrong order + raise ValueError("Limits for the resample_range are in the wrong order") + + # Return the instance itself for method chaining + return self + + @model_validator(mode="after") + def check_max_eccentricity_range(self) -> typing_extensions.Self: + """Validates the maximum eccentricity range. + + Ensures that the lower bound of the range is less than the upper bound. + If the bounds are in the wrong order (lower bound >= upper bound), a ValueError + is raised. + + Returns: + Self: The instance itself, for method chaining. + + Raises: + ValueError: If the lower bound is greater than or equal to the upper bound. + """ + # Get the lower and upper bounds of the maximum eccentricity range + low, high = self.Max_Eccentricity_range + + # Check if the lower bound is less than the upper bound + if low >= high: + # Raise a ValueError if the bounds are in the wrong order + raise ValueError( + "Limits for the Max_Eccentricity_range are in the wrong order" + ) + + # Return the instance itself for method chaining + return self + + @model_validator(mode="after") + def check_min_solidity_range(self) -> typing_extensions.Self: + """Validates the minimum solidity range. + + Ensures that the lower bound of the range is less than the upper bound. + If the bounds are in the wrong order (lower bound >= upper bound), a ValueError + is raised. + + Returns: + Self: The instance itself, for method chaining. + + Raises: + ValueError: If the lower bound is greater than or equal to the upper bound. + """ + # Get the lower and upper bounds of the minimum solidity range + low, high = self.Min_Solidity_range + + # Check if the lower bound is less than the upper bound + if low >= high: + # Raise a ValueError if the bounds are in the wrong order + raise ValueError("Limits for the Min_Solidity_range are in the wrong order") + + return self + + @model_validator(mode="after") + def check_min_size_range(self) -> typing_extensions.Self: + """Validates the minimum size range. + + Ensures that the lower bound of the range is less than the upper bound. + If the bounds are in the wrong order (lower bound >= upper bound), a ValueError + is raised. + + Returns: + Self: The instance itself, for method chaining. + + Raises: + ValueError: If the lower bound is greater than or equal to the upper bound. + """ + # Get the lower and upper bounds of the minimum size range + low, high = self.min_size_range + + # Check if the lower bound is less than the upper bound + if low >= high: + # Raise a ValueError if the bounds are in the wrong order + raise ValueError("Limits for the min_size_range are in the wrong order") + # Return the instance itself for method chaining + return self diff --git a/bubble_analyser/config.toml b/bubble_analyser/config.toml new file mode 100644 index 0000000..3b48e61 --- /dev/null +++ b/bubble_analyser/config.toml @@ -0,0 +1,48 @@ +# Parameters are described by its name, value, and range. +# All three items separated by commas + +# Default PARAMETERS + +# Morphological element used for binary operations, e.g. opening, closing, etc. +Morphological_element_size = 5 +Morphological_element_size_range = [3, 10] + +# Connectivity used, use 4 or 8 +Connectivity = 8 +Connectivity_range = [4, 8] + +# Marker size for watershed segmentation +Marker_size = 10 +Marker_size_range = [2, 30] + +# Images can be resampled to make processing faster +resample = 0.5 +resample_range = [0.1, 1.0] + +# Reject abnormal bubbles from quantification. E>0.85 or S<0.9 +Max_Eccentricity = 0.85 +Max_Eccentricity_range = [0.1, 1.0] +Min_Solidity = 0.9 +Min_Solidity_range = [0.1, 1.0] + +# Also ignore too small bubbles (equivalent diameter in mm) +min_size = 0.1 +min_size_range = [0, 50] + +# Image resolution +px2mm = 1.0 + +# Target image +target_img_path = "./tests/sample_images/03.jpg" + +# Background image +background_img_path = "./tests/calibration_files/Background.png" + +# Threshold value for background subtraction +threshold_value = 0.3 + +# Ruler image +ruler_img_path = "./tests/calibration_files/Ruler.png" + +# Batch processing flag +do_batch = false diff --git a/bubble_analyser/default.py b/bubble_analyser/default.py new file mode 100644 index 0000000..6fba838 --- /dev/null +++ b/bubble_analyser/default.py @@ -0,0 +1,246 @@ +"""Bubble Analyser: Image Processing for Circular Feature Detection. + +This script is designed to process and analyze images to detect and evaluate circular +features, such as bubbles, using various image processing techniques. The script +integrates several modular functions for loading images, processing them, and +calculating properties of detected features in terms of real-world measurements. + +The key functionalities include: + +1. Loading configuration parameters from a TOML file, which govern the image processing + steps and parameters. +2. Loading and preprocessing images, including conversion to grayscale and resizing + based on a given resampling factor. +3. Calculating the conversion factor from pixels to centimeters using a reference ruler + image, ensuring that measurements of detected features are accurate and scalable. +4. Executing the image processing algorithm, which involves thresholding, morphological + processing, distance transformation, connected component labeling, and watershed + segmentation to isolate and analyze circular features. +5. Displaying and saving intermediary and final images, along with calculating and + printing properties such as equivalent diameter and area of the detected features. + +The script is structured to allow easy customization and extension, making it suitable +for a wide range of image analysis tasks that involve circular feature detection and +measurement. + +To run the script, simply execute the `default()` function, which orchestrates the +entire process from loading configurations and images to running the analysis and +displaying results. +""" + +from pprint import pprint + +import cv2 +import matplotlib.pyplot as plt +import numpy as np +import toml as tomllib +from numpy import typing as npt +from skimage import ( + color, + io, + morphology, + transform, +) + +from .calculate_circle_properties import calculate_circle_properties +from .calculate_px2cm import calculate_px2cm +from .config import Config +from .image_preprocess import image_preprocess +from .morphological_process import morphological_process +from .threshold import threshold + + +def load_image( + image_path: str, img_resample: float +) -> tuple[npt.NDArray[np.int_], npt.NDArray[np.int_]]: + """Read and preprocess the input image. + + This function loads an image from the specified path, resizes it according to the + given resampling factor, and converts it to grayscale if the image is in RGB format. + + Args: + image_path: The file path of the image to load. + img_resample: The factor by which the image will be resampled (e.g., 0.5 for + reducing the size by half). + + Returns: + A tuple containing: + - The preprocessed grayscale image (if the original was in RGB) or the original + grayscale image. + - The resized image in RGB format. + """ + # Read the input image + img = io.imread(image_path) + + imgRGB = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) + scale_percent = img_resample * 100 # percent of original size + width = int(imgRGB.shape[1] * scale_percent / 100) + height = int(imgRGB.shape[0] * scale_percent / 100) + dim = (width, height) + + # resize image + imgRGB = cv2.resize(imgRGB, dim, interpolation=cv2.INTER_AREA) + + img = transform.resize( + img, + (int(img.shape[0] * img_resample), int(img.shape[1] * img_resample)), + anti_aliasing=True, + ) + if img.ndim > 2: + img = color.rgb2gray(img) # Convert to grayscale if the image is in RGB + + return img, imgRGB + + +def load_toml(file_path: str) -> Config: + """Load configuration parameters from a TOML file. + + This function reads the TOML configuration file from the specified path and loads + its contents into a dictionary. + + Args: + file_path: The file path of the TOML configuration file. + + Returns: + A dictionary containing the configuration parameters from the TOML file. + """ + toml_data = tomllib.load(file_path) + + return Config(**toml_data) + + +def run_algorithm( + target_img: npt.NDArray[np.int_], + bknd_img: npt.NDArray[np.int_], + imgRGB: npt.NDArray[np.int_], + params: Config, + px2cm: float, + threshold_value: float, +) -> None: + """Execute the image processing algorithm on the target image. + + This function performs a series of image processing steps on the target image, + including thresholding, morphological processing, and watershed segmentation. + It then calculates properties of the detected circular features, such as equivalent + diameter and area, in centimeters using the provided pixel-to-centimeter ratio. + + Args: + target_img: The preprocessed target image. + bknd_img: The background image used for thresholding. + imgRGB: The resized target image in RGB format. + params: A dictionary of parameters loaded from the TOML file. + px2cm: The conversion factor between pixels and centimeters. + threshold_value: Threshold value for background subtraction + + Returns: + None. The function displays and saves various intermediary and final images, and + prints the properties of the detected circular features. + """ + # Extract parameters from the dictionary + element_size = morphology.disk( + params.Morphological_element_size + ) # Structuring element for morphological operations + + # Below are variables that might be used in the future coding + # connectivity = params.Connectivity # Neighborhood connectivity (4 or 8) + # marker_size = params.Marker_size # Marker size for watershed segmentation + # max_eccentricity = params.Max_Eccentricity # Maximum eccentricity threshold + # min_solidity = params.Min_Solidity # Minimum solidity threshold + # min_bubble_size = params.min_size # Minimum bubble size (in mm) + # do_batch = params.do_batch # Flag for batch processing + + # Display the original image + plt.figure() + plt.subplot(231) + plt.title("1. Original image") + plt.imshow(target_img, cmap="gray") + + # Apply thresholding and morphological processing + plt.subplot(232) + imgThreshold_ = threshold(target_img, bknd_img, threshold_value) + imgThreshold = morphological_process(imgThreshold_, element_size) + plt.title("2. Thresh&morph process") + plt.imshow(imgThreshold * 255, cmap="gray") + + # Apply distance transform + plt.subplot(233) + distTrans = cv2.distanceTransform(imgThreshold, cv2.DIST_L2, 5) + plt.title("3. Distance Transform") + plt.imshow(distTrans) + + # Apply thresholding to the distance transform + plt.subplot(234) + _, distThresh = cv2.threshold( + distTrans, 0.3 * distTrans.max(), 255, cv2.THRESH_BINARY + ) + plt.title("4. Threshold of distTrans") + plt.imshow(distThresh) + + # Apply connected component labeling + plt.subplot(235) + distThresh = distThresh.astype(np.uint8) + _, labels = cv2.connectedComponents(distThresh) + plt.title("5. Labels") + plt.imshow(labels) + + # Apply watershed segmentation + plt.figure() + plt.subplot(121) + labels = labels.astype(np.int32) + labels = cv2.watershed(imgRGB, labels).astype(np.int_) + plt.title("6. Final graph after watershed") + plt.imshow(labels) + + # Display the images + plt.show() + + # Calculate and print the circle properties + circle_properties = calculate_circle_properties(labels, px2cm) + pprint(circle_properties) + + +def default() -> None: + """Run the default image processing routine. + + This function loads the configuration parameters from the TOML file, calculates the + pixel-to-centimeter ratio using a reference ruler image, and then runs the image + processing algorithm on the target image to detect and analyze circular features. + + Args: + None. + + Returns: + None. The function orchestrates the loading of images, execution of the + algorithm, and display of results. + """ + # Load parameters from the TOML configuration file + params = load_toml("./bubble_analyser/config.toml") + + # Read path and image resample factor + ruler_img_path = params.ruler_img_path + target_img_path = params.target_img_path + bknd_img_path = params.background_img_path + img_resample_factor = params.resample + threshold_value = params.threshold_value + + # Calculate the pixel to cm ratio + px2cm = calculate_px2cm(ruler_img_path, img_resample_factor) + print(f"Pixel to cm ratio: {px2cm} cm/pixel") + + # Read the background and target image, resize and process into gray scale + bknd_img, _ = image_preprocess(bknd_img_path, img_resample_factor) + target_img, imgRGB = image_preprocess(target_img_path, img_resample_factor) + + # Run the default image processing algorithm + run_algorithm(target_img, bknd_img, imgRGB, params, px2cm, threshold_value) + + +if __name__ == "__main__": + default() + +# First background subtraction (optional) then otsu thresholding +# Let user define limitations based on the properties of the bubbles for filtering them +# Output the image that eliminate the bubbles being filtered out +# Table and Histogram +# Let user modify the parameters in UI +# Merge default branch diff --git a/bubble_analyser/image_preprocess.py b/bubble_analyser/image_preprocess.py new file mode 100644 index 0000000..005fb6c --- /dev/null +++ b/bubble_analyser/image_preprocess.py @@ -0,0 +1,163 @@ +"""Image Preprocessing Functions. + +This module provides a collection of functions for image loading, color space conversion +, and resizing. It supports the preprocessing steps required for image analysis tasks, +especially in contexts where images need to be adapted for algorithmic processing and +visualization. + +Key Functions: +- load_image(image_path): Loads an image from a specified path into a NumPy array. +- get_greyscale(image): Converts an RGB image to grayscale, facilitating algorithms + that require single-channel input. +- get_RGB(image): Converts an image from BGR (common in OpenCV) to RGB format, suitable + for consistent image display and processing. +- resize_for_RGB(image, img_resample_factor): Resizes an RGB image according to a + specified resampling factor, typically used to reduce the image size for faster + processing without losing significant detail. +- resize_for_original_image(image, img_resample_factor): Similar to resize_for_RGB but + uses skimage's transform for resizing, providing a high-quality downsampling suitable + for analytical purposes. +- image_preprocess(img_path, img_resample): Orchestrates the loading, converting, and + resizing of an image. It outputs both a grayscale version for processing and an RGB + version for visualization. + +These functions are designed to be modular and can be combined in different ways +depending on the specific requirements of the image processing task at hand. For example +, in a typical workflow for image analysis, an image might be loaded, converted to +grayscale for analysis, and also kept in RGB for result visualization. + +Usage: +These utilities are particularly useful in applications like computer vision and digital +image processing where preprocessing steps are crucial for subsequent analysis, such as +object detection, pattern recognition, and more. +""" + +from pathlib import Path +from typing import cast + +import cv2 +import numpy as np +from numpy import typing as npt +from skimage import ( + color, + io, + transform, +) + + +def load_image(image_path: Path) -> npt.NDArray[np.int_]: + """Read and preprocess the input image. + + Args: + image_path (str): The file path of the image to load. + + Returns: + npt.NDArray: The image read in ndarray format. + """ + # Read the input image + + img = io.imread(image_path) + + return img + + +def get_greyscale(image: npt.NDArray[np.int_]) -> npt.NDArray[np.int_]: + """Converts an image to grayscale if it is in RGB format. + + Args: + image (npt.NDArray): The input image to be converted. + + Returns: + npt.NDArray: The grayscale image. + """ + if image.ndim > 2: + image = color.rgb2gray(image) # Convert to grayscale if the image is in RGB + return image + + +def get_RGB(image: npt.NDArray[np.int_]) -> npt.NDArray[np.int_]: + """Converts an image from BGR color space to RGB color space. + + Args: + image (npt.NDArray): The input image in BGR format. + + Returns: + npt.NDArray: The converted image in RGB format. + """ + imgRGB = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) + return cast(npt.NDArray[np.int_], imgRGB) + + +def resize_for_RGB( + image: npt.NDArray[np.int_], img_resample_factor: float +) -> npt.NDArray[np.int_]: + """Resizes an image in RGB format based on the provided resampling factor. + + Args: + image (npt.NDArray): The input image in RGB format. + img_resample_factor (float): The factor by which the image will be resampled. + + Returns: + npt.NDArray: The resized image in RGB format. + """ + scale_percent = img_resample_factor * 100 # percent of original size + width = int(image.shape[1] * scale_percent / 100) + height = int(image.shape[0] * scale_percent / 100) + img_resample_dimension = (width, height) + + image_resized = cv2.resize( + image, img_resample_dimension, interpolation=cv2.INTER_AREA + ) + return cast(npt.NDArray[np.int_], image_resized) + + +def resize_for_original_image( + image: npt.NDArray[np.int_], img_resample_factor: float +) -> npt.NDArray[np.int_]: + """Resizes an image based on the provided resampling factor for original image. + + Args: + image (npt.NDArray): The input image to be resized. + img_resample_factor (float): The factor by which the image will be resampled. + + Returns: + npt.NDArray: The resized image. + """ + image = transform.resize( + image, + ( + int(image.shape[0] * img_resample_factor), + int(image.shape[1] * img_resample_factor), + ), + anti_aliasing=True, + ) + return image + + +def image_preprocess( + img_path: Path, img_resample: float +) -> tuple[npt.NDArray[np.int_], npt.NDArray[np.int_]]: + """Load an image, resizing it based on a provided resampling factor. + + The resized grayscale image (img) is for use in the following "default" watershed + algorithm as a target image. And the RGB image (imgRGB) is for the visualization of + the results. They are resized in different ways for different use cases (the output + format of the methods are differnt). + + Args: + img_path (str): The file path of the image to preprocess. + img_resample (float): The resampling factor to apply to the image. + + Returns: + tuple[npt.NDArray, npt.NDArray]: A tuple containing the resized grayscale image + and the resized RGB image. + """ + image = load_image(img_path) + image_RGB = get_RGB(image) + + image = resize_for_original_image(image, img_resample) + image = get_greyscale(image) + + image_RGB = resize_for_RGB(image_RGB, img_resample) + + return image, image_RGB diff --git a/bubble_analyser/morphological_process.py b/bubble_analyser/morphological_process.py new file mode 100644 index 0000000..e726869 --- /dev/null +++ b/bubble_analyser/morphological_process.py @@ -0,0 +1,57 @@ +"""Morphological Processing Function for filling holes and clear borders. + +This module includes functions for advanced image processing using morphological +operations tailored to for filling holes and clear borders for further analysis. It +specifically focuses on refining the binary masks generated during image segmentation +processes. + +Function: +- morphological_process(target_img, element_size): Enhances a binary image by + applying morphological operations such as closing, hole filling, and border clearing. + +This function is particularly useful in contexts where binary images derived from +thresholding or other segmentation methods contain noise, small holes, or artifacts +that can interfere with further analysis. By using operations like closing to connect +nearby regions, filling holes to ensure that objects are solid, and clearing borders +to remove partial objects, this function prepares images for more reliable and robust +analysis. +""" + +import numpy as np +from numpy import typing as npt +from scipy import ndimage +from skimage import ( + morphology, + segmentation, +) + + +def morphological_process( + target_img: npt.NDArray[np.bool_], element_size: int +) -> npt.NDArray[np.int_]: + """Apply morphological operations to process the target image. + + This function performs a series of morphological operations on the input image, + including closing, filling holes, and clearing borders. These operations help in + refining the binary image by removing noise and filling gaps. + + Args: + target_img: A binary image (numpy array) where the regions of interest are + typically in white (True) and the background in black (False). + element_size: A structuring element used for morphological closing, typically a + disk-shaped array. + + + Returns: + A processed binary image (numpy array) where the regions of interest are more + defined, with filled holes and cleared borders. + """ + # Perform morphological closing and fill holes + image_processed = morphology.closing(target_img, element_size) + image_processed = ndimage.binary_fill_holes(image_processed) + image_processed = segmentation.clear_border(image_processed) + + image_processed = image_processed.astype(np.uint8) + # opening = cv2.morphologyEx(B,cv2.MORPH_OPEN,kernel, iterations = 2) + + return image_processed diff --git a/bubble_analyser/threshold.py b/bubble_analyser/threshold.py new file mode 100644 index 0000000..40ee358 --- /dev/null +++ b/bubble_analyser/threshold.py @@ -0,0 +1,101 @@ +"""Main Thresholding Functions. + +This module provides functions for applying various thresholding techniques to images, +aimed at segmenting objects from their backgrounds. It includes implementations of +Otsu's method and a customizable thresholding approach that involves background +subtraction. + +Functions: +- otsu_threshold(target_img): Applies Otsu's method to a grayscale image to create + a binary mask, which is then inverted for consistency with other processing steps. +- select_threshold_method(): Provides an interactive prompt for the user to select + a thresholding method from available options, enhancing flexibility in choosing + the appropriate method for different scenarios. +- threshold(target_img, bknd_img, threshold_value): Applies the chosen threshold method + to the target image, supporting either Otsu's method or a custom threshold based on + background subtraction, determined by user input. + +These thresholding functions are adaptable to various use cases, from basic academic +projects to complex industrial applications requiring robust foreground-background +segmentation. They are particularly useful in workflows that require pre-processing +before detailed image analysis, such as feature detection or object classification. + +Usage: +The functions can be directly called with appropriate parameters, with `threshold` +function allowing for dynamic method selection based on runtime decisions. This +design ensures that users can select the most suitable thresholding technique +based on the specific characteristics of the images they are working with. +""" + +import numpy as np +from numpy import typing as npt +from skimage import ( + filters, +) + +from .background_subtraction_threshold import background_subtraction_threshold + + +def otsu_threshold(target_img: npt.NDArray[np.int_]) -> npt.NDArray[np.bool_]: + """Apply Otsu's thresholding to the target image and return an inverted binary mask. + + This function takes a target image and a background image. It applies Otsu's + thresholding to the target image to create a binary mask where the foreground + objects are separatedfrom the background. The binary mask is then inverted, so + the foreground becomes the background and vice versa, the inversion is for easier + processing in following morphologcal process. + + Args: + target_img: A grayscale image (2D array) representing the target image. + bknd_img: A grayscale image (2D array) representing the background image (not + used in this function). + + Returns: + A binary (inverted) image where the foreground and background are swapped. + """ + binary_image = target_img > filters.threshold_otsu( + target_img + ) # Binary image using Otsu's thresholding + return ~binary_image # Invert the binary image + + +def select_threshold_method() -> str: + """Selects a threshold method from a list of available options. + + Prompts the user to choose a threshold method from the list of options. + The options are displayed with their corresponding numbers, and the user + is asked to input the number of their chosen method. + + Returns: + str: The chosen threshold method. + """ + options = ["OTSU's method", "Background subtraction"] + print("Select a threshold method:") + for i, option in enumerate(options): + print(f"{i+1}. {option}") + choice = input("Enter the number of your choice: ") + return options[int(choice) - 1] + + +def threshold( + target_img: npt.NDArray[np.int_], + bknd_img: npt.NDArray[np.int_], + threshold_value: float, +) -> npt.NDArray[np.bool]: + """Applies a threshold to the target image based on the selected method. + + Args: + target_img (npt.NDArray): The target image to apply the threshold to. + bknd_img (npt.NDArray): The background image used for background subtraction. + threshold_value (float): The threshold value used for background subtraction. + + Returns: + npt.NDArray: The thresholded image. + """ + method = select_threshold_method() + if method == "OTSU's method": + return otsu_threshold(target_img) + elif method == "Background subtraction": + return background_subtraction_threshold(target_img, bknd_img, threshold_value) + else: + raise ValueError(f"Unsupported threshold method: {method}") diff --git a/poetry.lock b/poetry.lock index 1a3f2a1..f0811bc 100644 --- a/poetry.lock +++ b/poetry.lock @@ -1,5 +1,16 @@ # This file is automatically @generated by Poetry 1.8.3 and should not be changed by hand. +[[package]] +name = "annotated-types" +version = "0.7.0" +description = "Reusable constraint types to use with typing.Annotated" +optional = false +python-versions = ">=3.8" +files = [ + {file = "annotated_types-0.7.0-py3-none-any.whl", hash = "sha256:1f02e8b43a8fbbc3f3e0d4f0f4bfc8131bcb4eebe8849b8e5c773f3a1c582a53"}, + {file = "annotated_types-0.7.0.tar.gz", hash = "sha256:aff07c09a53a08bc8cfccb9c85b05f1aa9a2a6f23728d790723543408344ce89"}, +] + [[package]] name = "attrs" version = "23.2.0" @@ -179,6 +190,69 @@ files = [ {file = "colorama-0.4.6.tar.gz", hash = "sha256:08695f5cb7ed6e0531a20572697297273c47b8cae5a63ffc6d6ed5c201be6e44"}, ] +[[package]] +name = "contourpy" +version = "1.2.1" +description = "Python library for calculating contours of 2D quadrilateral grids" +optional = false +python-versions = ">=3.9" +files = [ + {file = "contourpy-1.2.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:bd7c23df857d488f418439686d3b10ae2fbf9bc256cd045b37a8c16575ea1040"}, + {file = "contourpy-1.2.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:5b9eb0ca724a241683c9685a484da9d35c872fd42756574a7cfbf58af26677fd"}, + {file = "contourpy-1.2.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4c75507d0a55378240f781599c30e7776674dbaf883a46d1c90f37e563453480"}, + {file = "contourpy-1.2.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:11959f0ce4a6f7b76ec578576a0b61a28bdc0696194b6347ba3f1c53827178b9"}, + {file = "contourpy-1.2.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:eb3315a8a236ee19b6df481fc5f997436e8ade24a9f03dfdc6bd490fea20c6da"}, + {file = "contourpy-1.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:39f3ecaf76cd98e802f094e0d4fbc6dc9c45a8d0c4d185f0f6c2234e14e5f75b"}, + {file = "contourpy-1.2.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:94b34f32646ca0414237168d68a9157cb3889f06b096612afdd296003fdd32fd"}, + {file = "contourpy-1.2.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:457499c79fa84593f22454bbd27670227874cd2ff5d6c84e60575c8b50a69619"}, + {file = "contourpy-1.2.1-cp310-cp310-win32.whl", hash = "sha256:ac58bdee53cbeba2ecad824fa8159493f0bf3b8ea4e93feb06c9a465d6c87da8"}, + {file = "contourpy-1.2.1-cp310-cp310-win_amd64.whl", hash = "sha256:9cffe0f850e89d7c0012a1fb8730f75edd4320a0a731ed0c183904fe6ecfc3a9"}, + {file = "contourpy-1.2.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:6022cecf8f44e36af10bd9118ca71f371078b4c168b6e0fab43d4a889985dbb5"}, + {file = "contourpy-1.2.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:ef5adb9a3b1d0c645ff694f9bca7702ec2c70f4d734f9922ea34de02294fdf72"}, + {file = "contourpy-1.2.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6150ffa5c767bc6332df27157d95442c379b7dce3a38dff89c0f39b63275696f"}, + {file = "contourpy-1.2.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4c863140fafc615c14a4bf4efd0f4425c02230eb8ef02784c9a156461e62c965"}, + {file = "contourpy-1.2.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:00e5388f71c1a0610e6fe56b5c44ab7ba14165cdd6d695429c5cd94021e390b2"}, + {file = "contourpy-1.2.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d4492d82b3bc7fbb7e3610747b159869468079fe149ec5c4d771fa1f614a14df"}, + {file = "contourpy-1.2.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:49e70d111fee47284d9dd867c9bb9a7058a3c617274900780c43e38d90fe1205"}, + {file = "contourpy-1.2.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:b59c0ffceff8d4d3996a45f2bb6f4c207f94684a96bf3d9728dbb77428dd8cb8"}, + {file = "contourpy-1.2.1-cp311-cp311-win32.whl", hash = "sha256:7b4182299f251060996af5249c286bae9361fa8c6a9cda5efc29fe8bfd6062ec"}, + {file = "contourpy-1.2.1-cp311-cp311-win_amd64.whl", hash = "sha256:2855c8b0b55958265e8b5888d6a615ba02883b225f2227461aa9127c578a4922"}, + {file = "contourpy-1.2.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:62828cada4a2b850dbef89c81f5a33741898b305db244904de418cc957ff05dc"}, + {file = "contourpy-1.2.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:309be79c0a354afff9ff7da4aaed7c3257e77edf6c1b448a779329431ee79d7e"}, + {file = "contourpy-1.2.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2e785e0f2ef0d567099b9ff92cbfb958d71c2d5b9259981cd9bee81bd194c9a4"}, + {file = "contourpy-1.2.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1cac0a8f71a041aa587410424ad46dfa6a11f6149ceb219ce7dd48f6b02b87a7"}, + {file = "contourpy-1.2.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:af3f4485884750dddd9c25cb7e3915d83c2db92488b38ccb77dd594eac84c4a0"}, + {file = "contourpy-1.2.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9ce6889abac9a42afd07a562c2d6d4b2b7134f83f18571d859b25624a331c90b"}, + {file = "contourpy-1.2.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:a1eea9aecf761c661d096d39ed9026574de8adb2ae1c5bd7b33558af884fb2ce"}, + {file = "contourpy-1.2.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:187fa1d4c6acc06adb0fae5544c59898ad781409e61a926ac7e84b8f276dcef4"}, + {file = "contourpy-1.2.1-cp312-cp312-win32.whl", hash = "sha256:c2528d60e398c7c4c799d56f907664673a807635b857df18f7ae64d3e6ce2d9f"}, + {file = "contourpy-1.2.1-cp312-cp312-win_amd64.whl", hash = "sha256:1a07fc092a4088ee952ddae19a2b2a85757b923217b7eed584fdf25f53a6e7ce"}, + {file = "contourpy-1.2.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:bb6834cbd983b19f06908b45bfc2dad6ac9479ae04abe923a275b5f48f1a186b"}, + {file = "contourpy-1.2.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:1d59e739ab0e3520e62a26c60707cc3ab0365d2f8fecea74bfe4de72dc56388f"}, + {file = "contourpy-1.2.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bd3db01f59fdcbce5b22afad19e390260d6d0222f35a1023d9adc5690a889364"}, + {file = "contourpy-1.2.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a12a813949e5066148712a0626895c26b2578874e4cc63160bb007e6df3436fe"}, + {file = "contourpy-1.2.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fe0ccca550bb8e5abc22f530ec0466136379c01321fd94f30a22231e8a48d985"}, + {file = "contourpy-1.2.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e1d59258c3c67c865435d8fbeb35f8c59b8bef3d6f46c1f29f6123556af28445"}, + {file = "contourpy-1.2.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:f32c38afb74bd98ce26de7cc74a67b40afb7b05aae7b42924ea990d51e4dac02"}, + {file = "contourpy-1.2.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:d31a63bc6e6d87f77d71e1abbd7387ab817a66733734883d1fc0021ed9bfa083"}, + {file = "contourpy-1.2.1-cp39-cp39-win32.whl", hash = "sha256:ddcb8581510311e13421b1f544403c16e901c4e8f09083c881fab2be80ee31ba"}, + {file = "contourpy-1.2.1-cp39-cp39-win_amd64.whl", hash = "sha256:10a37ae557aabf2509c79715cd20b62e4c7c28b8cd62dd7d99e5ed3ce28c3fd9"}, + {file = "contourpy-1.2.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:a31f94983fecbac95e58388210427d68cd30fe8a36927980fab9c20062645609"}, + {file = "contourpy-1.2.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ef2b055471c0eb466033760a521efb9d8a32b99ab907fc8358481a1dd29e3bd3"}, + {file = "contourpy-1.2.1-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:b33d2bc4f69caedcd0a275329eb2198f560b325605810895627be5d4b876bf7f"}, + {file = "contourpy-1.2.1.tar.gz", hash = "sha256:4d8908b3bee1c889e547867ca4cdc54e5ab6be6d3e078556814a22457f49423c"}, +] + +[package.dependencies] +numpy = ">=1.20" + +[package.extras] +bokeh = ["bokeh", "selenium"] +docs = ["furo", "sphinx (>=7.2)", "sphinx-copybutton"] +mypy = ["contourpy[bokeh,docs]", "docutils-stubs", "mypy (==1.8.0)", "types-Pillow"] +test = ["Pillow", "contourpy[test-no-images]", "matplotlib"] +test-no-images = ["pytest", "pytest-cov", "pytest-xdist", "wurlitzer"] + [[package]] name = "coverage" version = "7.5.4" @@ -246,6 +320,21 @@ tomli = {version = "*", optional = true, markers = "python_full_version <= \"3.1 [package.extras] toml = ["tomli"] +[[package]] +name = "cycler" +version = "0.12.1" +description = "Composable style cycles" +optional = false +python-versions = ">=3.8" +files = [ + {file = "cycler-0.12.1-py3-none-any.whl", hash = "sha256:85cef7cff222d8644161529808465972e51340599459b8ac3ccbac5a854e0d30"}, + {file = "cycler-0.12.1.tar.gz", hash = "sha256:88bb128f02ba341da8ef447245a9e138fae777f6a23943da4540077d3601eb1c"}, +] + +[package.extras] +docs = ["ipython", "matplotlib", "numpydoc", "sphinx"] +tests = ["pytest", "pytest-cov", "pytest-xdist"] + [[package]] name = "distlib" version = "0.3.8" @@ -287,6 +376,71 @@ docs = ["furo (>=2023.9.10)", "sphinx (>=7.2.6)", "sphinx-autodoc-typehints (>=1 testing = ["covdefaults (>=2.3)", "coverage (>=7.3.2)", "diff-cover (>=8.0.1)", "pytest (>=7.4.3)", "pytest-asyncio (>=0.21)", "pytest-cov (>=4.1)", "pytest-mock (>=3.12)", "pytest-timeout (>=2.2)", "virtualenv (>=20.26.2)"] typing = ["typing-extensions (>=4.8)"] +[[package]] +name = "fonttools" +version = "4.53.1" +description = "Tools to manipulate font files" +optional = false +python-versions = ">=3.8" +files = [ + {file = "fonttools-4.53.1-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:0679a30b59d74b6242909945429dbddb08496935b82f91ea9bf6ad240ec23397"}, + {file = "fonttools-4.53.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:e8bf06b94694251861ba7fdeea15c8ec0967f84c3d4143ae9daf42bbc7717fe3"}, + {file = "fonttools-4.53.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b96cd370a61f4d083c9c0053bf634279b094308d52fdc2dd9a22d8372fdd590d"}, + {file = "fonttools-4.53.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a1c7c5aa18dd3b17995898b4a9b5929d69ef6ae2af5b96d585ff4005033d82f0"}, + {file = "fonttools-4.53.1-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:e013aae589c1c12505da64a7d8d023e584987e51e62006e1bb30d72f26522c41"}, + {file = "fonttools-4.53.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:9efd176f874cb6402e607e4cc9b4a9cd584d82fc34a4b0c811970b32ba62501f"}, + {file = "fonttools-4.53.1-cp310-cp310-win32.whl", hash = "sha256:c8696544c964500aa9439efb6761947393b70b17ef4e82d73277413f291260a4"}, + {file = "fonttools-4.53.1-cp310-cp310-win_amd64.whl", hash = "sha256:8959a59de5af6d2bec27489e98ef25a397cfa1774b375d5787509c06659b3671"}, + {file = "fonttools-4.53.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:da33440b1413bad53a8674393c5d29ce64d8c1a15ef8a77c642ffd900d07bfe1"}, + {file = "fonttools-4.53.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:5ff7e5e9bad94e3a70c5cd2fa27f20b9bb9385e10cddab567b85ce5d306ea923"}, + {file = "fonttools-4.53.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c6e7170d675d12eac12ad1a981d90f118c06cf680b42a2d74c6c931e54b50719"}, + {file = "fonttools-4.53.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bee32ea8765e859670c4447b0817514ca79054463b6b79784b08a8df3a4d78e3"}, + {file = "fonttools-4.53.1-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:6e08f572625a1ee682115223eabebc4c6a2035a6917eac6f60350aba297ccadb"}, + {file = "fonttools-4.53.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:b21952c092ffd827504de7e66b62aba26fdb5f9d1e435c52477e6486e9d128b2"}, + {file = "fonttools-4.53.1-cp311-cp311-win32.whl", hash = "sha256:9dfdae43b7996af46ff9da520998a32b105c7f098aeea06b2226b30e74fbba88"}, + {file = "fonttools-4.53.1-cp311-cp311-win_amd64.whl", hash = "sha256:d4d0096cb1ac7a77b3b41cd78c9b6bc4a400550e21dc7a92f2b5ab53ed74eb02"}, + {file = "fonttools-4.53.1-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:d92d3c2a1b39631a6131c2fa25b5406855f97969b068e7e08413325bc0afba58"}, + {file = "fonttools-4.53.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:3b3c8ebafbee8d9002bd8f1195d09ed2bd9ff134ddec37ee8f6a6375e6a4f0e8"}, + {file = "fonttools-4.53.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:32f029c095ad66c425b0ee85553d0dc326d45d7059dbc227330fc29b43e8ba60"}, + {file = "fonttools-4.53.1-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:10f5e6c3510b79ea27bb1ebfcc67048cde9ec67afa87c7dd7efa5c700491ac7f"}, + {file = "fonttools-4.53.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:f677ce218976496a587ab17140da141557beb91d2a5c1a14212c994093f2eae2"}, + {file = "fonttools-4.53.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:9e6ceba2a01b448e36754983d376064730690401da1dd104ddb543519470a15f"}, + {file = "fonttools-4.53.1-cp312-cp312-win32.whl", hash = "sha256:791b31ebbc05197d7aa096bbc7bd76d591f05905d2fd908bf103af4488e60670"}, + {file = "fonttools-4.53.1-cp312-cp312-win_amd64.whl", hash = "sha256:6ed170b5e17da0264b9f6fae86073be3db15fa1bd74061c8331022bca6d09bab"}, + {file = "fonttools-4.53.1-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:c818c058404eb2bba05e728d38049438afd649e3c409796723dfc17cd3f08749"}, + {file = "fonttools-4.53.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:651390c3b26b0c7d1f4407cad281ee7a5a85a31a110cbac5269de72a51551ba2"}, + {file = "fonttools-4.53.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e54f1bba2f655924c1138bbc7fa91abd61f45c68bd65ab5ed985942712864bbb"}, + {file = "fonttools-4.53.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c9cd19cf4fe0595ebdd1d4915882b9440c3a6d30b008f3cc7587c1da7b95be5f"}, + {file = "fonttools-4.53.1-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:2af40ae9cdcb204fc1d8f26b190aa16534fcd4f0df756268df674a270eab575d"}, + {file = "fonttools-4.53.1-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:35250099b0cfb32d799fb5d6c651220a642fe2e3c7d2560490e6f1d3f9ae9169"}, + {file = "fonttools-4.53.1-cp38-cp38-win32.whl", hash = "sha256:f08df60fbd8d289152079a65da4e66a447efc1d5d5a4d3f299cdd39e3b2e4a7d"}, + {file = "fonttools-4.53.1-cp38-cp38-win_amd64.whl", hash = "sha256:7b6b35e52ddc8fb0db562133894e6ef5b4e54e1283dff606fda3eed938c36fc8"}, + {file = "fonttools-4.53.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:75a157d8d26c06e64ace9df037ee93a4938a4606a38cb7ffaf6635e60e253b7a"}, + {file = "fonttools-4.53.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:4824c198f714ab5559c5be10fd1adf876712aa7989882a4ec887bf1ef3e00e31"}, + {file = "fonttools-4.53.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:becc5d7cb89c7b7afa8321b6bb3dbee0eec2b57855c90b3e9bf5fb816671fa7c"}, + {file = "fonttools-4.53.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:84ec3fb43befb54be490147b4a922b5314e16372a643004f182babee9f9c3407"}, + {file = "fonttools-4.53.1-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:73379d3ffdeecb376640cd8ed03e9d2d0e568c9d1a4e9b16504a834ebadc2dfb"}, + {file = "fonttools-4.53.1-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:02569e9a810f9d11f4ae82c391ebc6fb5730d95a0657d24d754ed7763fb2d122"}, + {file = "fonttools-4.53.1-cp39-cp39-win32.whl", hash = "sha256:aae7bd54187e8bf7fd69f8ab87b2885253d3575163ad4d669a262fe97f0136cb"}, + {file = "fonttools-4.53.1-cp39-cp39-win_amd64.whl", hash = "sha256:e5b708073ea3d684235648786f5f6153a48dc8762cdfe5563c57e80787c29fbb"}, + {file = "fonttools-4.53.1-py3-none-any.whl", hash = "sha256:f1f8758a2ad110bd6432203a344269f445a2907dc24ef6bccfd0ac4e14e0d71d"}, + {file = "fonttools-4.53.1.tar.gz", hash = "sha256:e128778a8e9bc11159ce5447f76766cefbd876f44bd79aff030287254e4752c4"}, +] + +[package.extras] +all = ["brotli (>=1.0.1)", "brotlicffi (>=0.8.0)", "fs (>=2.2.0,<3)", "lxml (>=4.0)", "lz4 (>=1.7.4.2)", "matplotlib", "munkres", "pycairo", "scipy", "skia-pathops (>=0.5.0)", "sympy", "uharfbuzz (>=0.23.0)", "unicodedata2 (>=15.1.0)", "xattr", "zopfli (>=0.1.4)"] +graphite = ["lz4 (>=1.7.4.2)"] +interpolatable = ["munkres", "pycairo", "scipy"] +lxml = ["lxml (>=4.0)"] +pathops = ["skia-pathops (>=0.5.0)"] +plot = ["matplotlib"] +repacker = ["uharfbuzz (>=0.23.0)"] +symfont = ["sympy"] +type1 = ["xattr"] +ufo = ["fs (>=2.2.0,<3)"] +unicode = ["unicodedata2 (>=15.1.0)"] +woff = ["brotli (>=1.0.1)", "brotlicffi (>=0.8.0)", "zopfli (>=0.1.4)"] + [[package]] name = "ghp-import" version = "2.1.0" @@ -329,6 +483,38 @@ files = [ {file = "idna-3.7.tar.gz", hash = "sha256:028ff3aadf0609c1fd278d8ea3089299412a7a8b9bd005dd08b9f8285bcb5cfc"}, ] +[[package]] +name = "imageio" +version = "2.34.2" +description = "Library for reading and writing a wide range of image, video, scientific, and volumetric data formats." +optional = false +python-versions = ">=3.8" +files = [ + {file = "imageio-2.34.2-py3-none-any.whl", hash = "sha256:a0bb27ec9d5bab36a9f4835e51b21d2cb099e1f78451441f94687ff3404b79f8"}, + {file = "imageio-2.34.2.tar.gz", hash = "sha256:5c0c0ee8faa018a1c42f649b90395dd4d3bb6187c09053a0cd6f1fdd51bbff5e"}, +] + +[package.dependencies] +numpy = "*" +pillow = ">=8.3.2" + +[package.extras] +all-plugins = ["astropy", "av", "imageio-ffmpeg", "pillow-heif", "psutil", "tifffile"] +all-plugins-pypy = ["av", "imageio-ffmpeg", "pillow-heif", "psutil", "tifffile"] +build = ["wheel"] +dev = ["black", "flake8", "fsspec[github]", "pytest", "pytest-cov"] +docs = ["numpydoc", "pydata-sphinx-theme", "sphinx (<6)"] +ffmpeg = ["imageio-ffmpeg", "psutil"] +fits = ["astropy"] +full = ["astropy", "av", "black", "flake8", "fsspec[github]", "gdal", "imageio-ffmpeg", "itk", "numpydoc", "pillow-heif", "psutil", "pydata-sphinx-theme", "pytest", "pytest-cov", "sphinx (<6)", "tifffile", "wheel"] +gdal = ["gdal"] +itk = ["itk"] +linting = ["black", "flake8"] +pillow-heif = ["pillow-heif"] +pyav = ["av"] +test = ["fsspec[github]", "pytest", "pytest-cov"] +tifffile = ["tifffile"] + [[package]] name = "iniconfig" version = "2.0.0" @@ -357,6 +543,138 @@ MarkupSafe = ">=2.0" [package.extras] i18n = ["Babel (>=2.7)"] +[[package]] +name = "kiwisolver" +version = "1.4.5" +description = "A fast implementation of the Cassowary constraint solver" +optional = false +python-versions = ">=3.7" +files = [ + {file = "kiwisolver-1.4.5-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:05703cf211d585109fcd72207a31bb170a0f22144d68298dc5e61b3c946518af"}, + {file = "kiwisolver-1.4.5-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:146d14bebb7f1dc4d5fbf74f8a6cb15ac42baadee8912eb84ac0b3b2a3dc6ac3"}, + {file = "kiwisolver-1.4.5-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:6ef7afcd2d281494c0a9101d5c571970708ad911d028137cd558f02b851c08b4"}, + {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:9eaa8b117dc8337728e834b9c6e2611f10c79e38f65157c4c38e9400286f5cb1"}, + {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:ec20916e7b4cbfb1f12380e46486ec4bcbaa91a9c448b97023fde0d5bbf9e4ff"}, + {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:39b42c68602539407884cf70d6a480a469b93b81b7701378ba5e2328660c847a"}, + {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:aa12042de0171fad672b6c59df69106d20d5596e4f87b5e8f76df757a7c399aa"}, + {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2a40773c71d7ccdd3798f6489aaac9eee213d566850a9533f8d26332d626b82c"}, + {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:19df6e621f6d8b4b9c4d45f40a66839294ff2bb235e64d2178f7522d9170ac5b"}, + {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:83d78376d0d4fd884e2c114d0621624b73d2aba4e2788182d286309ebdeed770"}, + {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:e391b1f0a8a5a10ab3b9bb6afcfd74f2175f24f8975fb87ecae700d1503cdee0"}, + {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:852542f9481f4a62dbb5dd99e8ab7aedfeb8fb6342349a181d4036877410f525"}, + {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:59edc41b24031bc25108e210c0def6f6c2191210492a972d585a06ff246bb79b"}, + {file = "kiwisolver-1.4.5-cp310-cp310-win32.whl", hash = "sha256:a6aa6315319a052b4ee378aa171959c898a6183f15c1e541821c5c59beaa0238"}, + {file = "kiwisolver-1.4.5-cp310-cp310-win_amd64.whl", hash = "sha256:d0ef46024e6a3d79c01ff13801cb19d0cad7fd859b15037aec74315540acc276"}, + {file = "kiwisolver-1.4.5-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:11863aa14a51fd6ec28688d76f1735f8f69ab1fabf388851a595d0721af042f5"}, + {file = "kiwisolver-1.4.5-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:8ab3919a9997ab7ef2fbbed0cc99bb28d3c13e6d4b1ad36e97e482558a91be90"}, + {file = "kiwisolver-1.4.5-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:fcc700eadbbccbf6bc1bcb9dbe0786b4b1cb91ca0dcda336eef5c2beed37b797"}, + {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:dfdd7c0b105af050eb3d64997809dc21da247cf44e63dc73ff0fd20b96be55a9"}, + {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:76c6a5964640638cdeaa0c359382e5703e9293030fe730018ca06bc2010c4437"}, + {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bbea0db94288e29afcc4c28afbf3a7ccaf2d7e027489c449cf7e8f83c6346eb9"}, + {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:ceec1a6bc6cab1d6ff5d06592a91a692f90ec7505d6463a88a52cc0eb58545da"}, + {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:040c1aebeda72197ef477a906782b5ab0d387642e93bda547336b8957c61022e"}, + {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:f91de7223d4c7b793867797bacd1ee53bfe7359bd70d27b7b58a04efbb9436c8"}, + {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:faae4860798c31530dd184046a900e652c95513796ef51a12bc086710c2eec4d"}, + {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:b0157420efcb803e71d1b28e2c287518b8808b7cf1ab8af36718fd0a2c453eb0"}, + {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:06f54715b7737c2fecdbf140d1afb11a33d59508a47bf11bb38ecf21dc9ab79f"}, + {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:fdb7adb641a0d13bdcd4ef48e062363d8a9ad4a182ac7647ec88f695e719ae9f"}, + {file = "kiwisolver-1.4.5-cp311-cp311-win32.whl", hash = "sha256:bb86433b1cfe686da83ce32a9d3a8dd308e85c76b60896d58f082136f10bffac"}, + {file = "kiwisolver-1.4.5-cp311-cp311-win_amd64.whl", hash = "sha256:6c08e1312a9cf1074d17b17728d3dfce2a5125b2d791527f33ffbe805200a355"}, + {file = "kiwisolver-1.4.5-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:32d5cf40c4f7c7b3ca500f8985eb3fb3a7dfc023215e876f207956b5ea26632a"}, + {file = "kiwisolver-1.4.5-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:f846c260f483d1fd217fe5ed7c173fb109efa6b1fc8381c8b7552c5781756192"}, + {file = "kiwisolver-1.4.5-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:5ff5cf3571589b6d13bfbfd6bcd7a3f659e42f96b5fd1c4830c4cf21d4f5ef45"}, + {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7269d9e5f1084a653d575c7ec012ff57f0c042258bf5db0954bf551c158466e7"}, + {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:da802a19d6e15dffe4b0c24b38b3af68e6c1a68e6e1d8f30148c83864f3881db"}, + {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3aba7311af82e335dd1e36ffff68aaca609ca6290c2cb6d821a39aa075d8e3ff"}, + {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:763773d53f07244148ccac5b084da5adb90bfaee39c197554f01b286cf869228"}, + {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2270953c0d8cdab5d422bee7d2007f043473f9d2999631c86a223c9db56cbd16"}, + {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:d099e745a512f7e3bbe7249ca835f4d357c586d78d79ae8f1dcd4d8adeb9bda9"}, + {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:74db36e14a7d1ce0986fa104f7d5637aea5c82ca6326ed0ec5694280942d1162"}, + {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:7e5bab140c309cb3a6ce373a9e71eb7e4873c70c2dda01df6820474f9889d6d4"}, + {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:0f114aa76dc1b8f636d077979c0ac22e7cd8f3493abbab152f20eb8d3cda71f3"}, + {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:88a2df29d4724b9237fc0c6eaf2a1adae0cdc0b3e9f4d8e7dc54b16812d2d81a"}, + {file = "kiwisolver-1.4.5-cp312-cp312-win32.whl", hash = "sha256:72d40b33e834371fd330fb1472ca19d9b8327acb79a5821d4008391db8e29f20"}, + {file = "kiwisolver-1.4.5-cp312-cp312-win_amd64.whl", hash = "sha256:2c5674c4e74d939b9d91dda0fae10597ac7521768fec9e399c70a1f27e2ea2d9"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:3a2b053a0ab7a3960c98725cfb0bf5b48ba82f64ec95fe06f1d06c99b552e130"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3cd32d6c13807e5c66a7cbb79f90b553642f296ae4518a60d8d76243b0ad2898"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:59ec7b7c7e1a61061850d53aaf8e93db63dce0c936db1fda2658b70e4a1be709"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:da4cfb373035def307905d05041c1d06d8936452fe89d464743ae7fb8371078b"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2400873bccc260b6ae184b2b8a4fec0e4082d30648eadb7c3d9a13405d861e89"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:1b04139c4236a0f3aff534479b58f6f849a8b351e1314826c2d230849ed48985"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:4e66e81a5779b65ac21764c295087de82235597a2293d18d943f8e9e32746265"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:7931d8f1f67c4be9ba1dd9c451fb0eeca1a25b89e4d3f89e828fe12a519b782a"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:b3f7e75f3015df442238cca659f8baa5f42ce2a8582727981cbfa15fee0ee205"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:bbf1d63eef84b2e8c89011b7f2235b1e0bf7dacc11cac9431fc6468e99ac77fb"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:4c380469bd3f970ef677bf2bcba2b6b0b4d5c75e7a020fb863ef75084efad66f"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-win32.whl", hash = "sha256:9408acf3270c4b6baad483865191e3e582b638b1654a007c62e3efe96f09a9a3"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-win_amd64.whl", hash = "sha256:5b94529f9b2591b7af5f3e0e730a4e0a41ea174af35a4fd067775f9bdfeee01a"}, + {file = "kiwisolver-1.4.5-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:11c7de8f692fc99816e8ac50d1d1aef4f75126eefc33ac79aac02c099fd3db71"}, + {file = "kiwisolver-1.4.5-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:53abb58632235cd154176ced1ae8f0d29a6657aa1aa9decf50b899b755bc2b93"}, + {file = "kiwisolver-1.4.5-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:88b9f257ca61b838b6f8094a62418421f87ac2a1069f7e896c36a7d86b5d4c29"}, + {file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3195782b26fc03aa9c6913d5bad5aeb864bdc372924c093b0f1cebad603dd712"}, + {file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fc579bf0f502e54926519451b920e875f433aceb4624a3646b3252b5caa9e0b6"}, + {file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5a580c91d686376f0f7c295357595c5a026e6cbc3d77b7c36e290201e7c11ecb"}, + {file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:cfe6ab8da05c01ba6fbea630377b5da2cd9bcbc6338510116b01c1bc939a2c18"}, + {file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:d2e5a98f0ec99beb3c10e13b387f8db39106d53993f498b295f0c914328b1333"}, + {file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:a51a263952b1429e429ff236d2f5a21c5125437861baeed77f5e1cc2d2c7c6da"}, + {file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:3edd2fa14e68c9be82c5b16689e8d63d89fe927e56debd6e1dbce7a26a17f81b"}, + {file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:74d1b44c6cfc897df648cc9fdaa09bc3e7679926e6f96df05775d4fb3946571c"}, + {file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:76d9289ed3f7501012e05abb8358bbb129149dbd173f1f57a1bf1c22d19ab7cc"}, + {file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:92dea1ffe3714fa8eb6a314d2b3c773208d865a0e0d35e713ec54eea08a66250"}, + {file = "kiwisolver-1.4.5-cp38-cp38-win32.whl", hash = "sha256:5c90ae8c8d32e472be041e76f9d2f2dbff4d0b0be8bd4041770eddb18cf49a4e"}, + {file = "kiwisolver-1.4.5-cp38-cp38-win_amd64.whl", hash = "sha256:c7940c1dc63eb37a67721b10d703247552416f719c4188c54e04334321351ced"}, + {file = "kiwisolver-1.4.5-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:9407b6a5f0d675e8a827ad8742e1d6b49d9c1a1da5d952a67d50ef5f4170b18d"}, + {file = "kiwisolver-1.4.5-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:15568384086b6df3c65353820a4473575dbad192e35010f622c6ce3eebd57af9"}, + {file = "kiwisolver-1.4.5-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:0dc9db8e79f0036e8173c466d21ef18e1befc02de8bf8aa8dc0813a6dc8a7046"}, + {file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:cdc8a402aaee9a798b50d8b827d7ecf75edc5fb35ea0f91f213ff927c15f4ff0"}, + {file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:6c3bd3cde54cafb87d74d8db50b909705c62b17c2099b8f2e25b461882e544ff"}, + {file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:955e8513d07a283056b1396e9a57ceddbd272d9252c14f154d450d227606eb54"}, + {file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:346f5343b9e3f00b8db8ba359350eb124b98c99efd0b408728ac6ebf38173958"}, + {file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b9098e0049e88c6a24ff64545cdfc50807818ba6c1b739cae221bbbcbc58aad3"}, + {file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:00bd361b903dc4bbf4eb165f24d1acbee754fce22ded24c3d56eec268658a5cf"}, + {file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:7b8b454bac16428b22560d0a1cf0a09875339cab69df61d7805bf48919415901"}, + {file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:f1d072c2eb0ad60d4c183f3fb44ac6f73fb7a8f16a2694a91f988275cbf352f9"}, + {file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:31a82d498054cac9f6d0b53d02bb85811185bcb477d4b60144f915f3b3126342"}, + {file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:6512cb89e334e4700febbffaaa52761b65b4f5a3cf33f960213d5656cea36a77"}, + {file = "kiwisolver-1.4.5-cp39-cp39-win32.whl", hash = "sha256:9db8ea4c388fdb0f780fe91346fd438657ea602d58348753d9fb265ce1bca67f"}, + {file = "kiwisolver-1.4.5-cp39-cp39-win_amd64.whl", hash = "sha256:59415f46a37f7f2efeec758353dd2eae1b07640d8ca0f0c42548ec4125492635"}, + {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:5c7b3b3a728dc6faf3fc372ef24f21d1e3cee2ac3e9596691d746e5a536de920"}, + {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:620ced262a86244e2be10a676b646f29c34537d0d9cc8eb26c08f53d98013390"}, + {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:378a214a1e3bbf5ac4a8708304318b4f890da88c9e6a07699c4ae7174c09a68d"}, + {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:aaf7be1207676ac608a50cd08f102f6742dbfc70e8d60c4db1c6897f62f71523"}, + {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:ba55dce0a9b8ff59495ddd050a0225d58bd0983d09f87cfe2b6aec4f2c1234e4"}, + {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:fd32ea360bcbb92d28933fc05ed09bffcb1704ba3fc7942e81db0fd4f81a7892"}, + {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:5e7139af55d1688f8b960ee9ad5adafc4ac17c1c473fe07133ac092310d76544"}, + {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:dced8146011d2bc2e883f9bd68618b8247387f4bbec46d7392b3c3b032640126"}, + {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c9bf3325c47b11b2e51bca0824ea217c7cd84491d8ac4eefd1e409705ef092bd"}, + {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:5794cf59533bc3f1b1c821f7206a3617999db9fbefc345360aafe2e067514929"}, + {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:e368f200bbc2e4f905b8e71eb38b3c04333bddaa6a2464a6355487b02bb7fb09"}, + {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e5d706eba36b4c4d5bc6c6377bb6568098765e990cfc21ee16d13963fab7b3e7"}, + {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:85267bd1aa8880a9c88a8cb71e18d3d64d2751a790e6ca6c27b8ccc724bcd5ad"}, + {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:210ef2c3a1f03272649aff1ef992df2e724748918c4bc2d5a90352849eb40bea"}, + {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:11d011a7574eb3b82bcc9c1a1d35c1d7075677fdd15de527d91b46bd35e935ee"}, + {file = "kiwisolver-1.4.5.tar.gz", hash = "sha256:e57e563a57fb22a142da34f38acc2fc1a5c864bc29ca1517a88abc963e60d6ec"}, +] + +[[package]] +name = "lazy-loader" +version = "0.4" +description = "Makes it easy to load subpackages and functions on demand." +optional = false +python-versions = ">=3.7" +files = [ + {file = "lazy_loader-0.4-py3-none-any.whl", hash = "sha256:342aa8e14d543a154047afb4ba8ef17f5563baad3fc610d7b15b213b0f119efc"}, + {file = "lazy_loader-0.4.tar.gz", hash = "sha256:47c75182589b91a4e1a85a136c074285a5ad4d9f39c63e0d7fb76391c4574cd1"}, +] + +[package.dependencies] +packaging = "*" + +[package.extras] +dev = ["changelist (==0.5)"] +lint = ["pre-commit (==3.7.0)"] +test = ["pytest (>=7.4)", "pytest-cov (>=4.1)"] + [[package]] name = "markdown" version = "3.6" @@ -441,6 +759,58 @@ files = [ {file = "MarkupSafe-2.1.5.tar.gz", hash = "sha256:d283d37a890ba4c1ae73ffadf8046435c76e7bc2247bbb63c00bd1a709c6544b"}, ] +[[package]] +name = "matplotlib" +version = "3.9.1.post1" +description = "Python plotting package" +optional = false +python-versions = ">=3.9" +files = [ + {file = "matplotlib-3.9.1.post1-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:3779ad3e8b72df22b8a622c5796bbcfabfa0069b835412e3c1dec8ee3de92d0c"}, + {file = "matplotlib-3.9.1.post1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ec400340f8628e8e2260d679078d4e9b478699f386e5cc8094e80a1cb0039c7c"}, + {file = "matplotlib-3.9.1.post1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:82c18791b8862ea095081f745b81f896b011c5a5091678fb33204fef641476af"}, + {file = "matplotlib-3.9.1.post1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:621a628389c09a6b9f609a238af8e66acecece1cfa12febc5fe4195114ba7446"}, + {file = "matplotlib-3.9.1.post1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:9a54734ca761ebb27cd4f0b6c2ede696ab6861052d7d7e7b8f7a6782665115f5"}, + {file = "matplotlib-3.9.1.post1-cp310-cp310-win_amd64.whl", hash = "sha256:0721f93db92311bb514e446842e2b21c004541dcca0281afa495053e017c5458"}, + {file = "matplotlib-3.9.1.post1-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:b08b46058fe2a31ecb81ef6aa3611f41d871f6a8280e9057cb4016cb3d8e894a"}, + {file = "matplotlib-3.9.1.post1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:22b344e84fcc574f561b5731f89a7625db8ef80cdbb0026a8ea855a33e3429d1"}, + {file = "matplotlib-3.9.1.post1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4b49fee26d64aefa9f061b575f0f7b5fc4663e51f87375c7239efa3d30d908fa"}, + {file = "matplotlib-3.9.1.post1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:89eb7e89e2b57856533c5c98f018aa3254fa3789fcd86d5f80077b9034a54c9a"}, + {file = "matplotlib-3.9.1.post1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:c06e742bade41fda6176d4c9c78c9ea016e176cd338e62a1686384cb1eb8de41"}, + {file = "matplotlib-3.9.1.post1-cp311-cp311-win_amd64.whl", hash = "sha256:c44edab5b849e0fc1f1c9d6e13eaa35ef65925f7be45be891d9784709ad95561"}, + {file = "matplotlib-3.9.1.post1-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:bf28b09986aee06393e808e661c3466be9c21eff443c9bc881bce04bfbb0c500"}, + {file = "matplotlib-3.9.1.post1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:92aeb8c439d4831510d8b9d5e39f31c16c7f37873879767c26b147cef61e54cd"}, + {file = "matplotlib-3.9.1.post1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f15798b0691b45c80d3320358a88ce5a9d6f518b28575b3ea3ed31b4bd95d009"}, + {file = "matplotlib-3.9.1.post1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d59fc6096da7b9c1df275f9afc3fef5cbf634c21df9e5f844cba3dd8deb1847d"}, + {file = "matplotlib-3.9.1.post1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:ab986817a32a70ce22302438691e7df4c6ee4a844d47289db9d583d873491e0b"}, + {file = "matplotlib-3.9.1.post1-cp312-cp312-win_amd64.whl", hash = "sha256:0d78e7d2d86c4472da105d39aba9b754ed3dfeaeaa4ac7206b82706e0a5362fa"}, + {file = "matplotlib-3.9.1.post1-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:bd07eba6431b4dc9253cce6374a28c415e1d3a7dc9f8aba028ea7592f06fe172"}, + {file = "matplotlib-3.9.1.post1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:ca230cc4482010d646827bd2c6d140c98c361e769ae7d954ebf6fff2a226f5b1"}, + {file = "matplotlib-3.9.1.post1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ace27c0fdeded399cbc43f22ffa76e0f0752358f5b33106ec7197534df08725a"}, + {file = "matplotlib-3.9.1.post1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9a4f3aeb7ba14c497dc6f021a076c48c2e5fbdf3da1e7264a5d649683e284a2f"}, + {file = "matplotlib-3.9.1.post1-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:23f96fbd4ff4cfa9b8a6b685a65e7eb3c2ced724a8d965995ec5c9c2b1f7daf5"}, + {file = "matplotlib-3.9.1.post1-cp39-cp39-win_amd64.whl", hash = "sha256:2808b95452b4ffa14bfb7c7edffc5350743c31bda495f0d63d10fdd9bc69e895"}, + {file = "matplotlib-3.9.1.post1-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:ffc91239f73b4179dec256b01299d46d0ffa9d27d98494bc1476a651b7821cbe"}, + {file = "matplotlib-3.9.1.post1-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:f965ebca9fd4feaaca45937c4849d92b70653057497181100fcd1e18161e5f29"}, + {file = "matplotlib-3.9.1.post1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:801ee9323fd7b2da0d405aebbf98d1da77ea430bbbbbec6834c0b3af15e5db44"}, + {file = "matplotlib-3.9.1.post1-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:50113e9b43ceb285739f35d43db36aa752fb8154325b35d134ff6e177452f9ec"}, + {file = "matplotlib-3.9.1.post1.tar.gz", hash = "sha256:c91e585c65092c975a44dc9d4239ba8c594ba3c193d7c478b6d178c4ef61f406"}, +] + +[package.dependencies] +contourpy = ">=1.0.1" +cycler = ">=0.10" +fonttools = ">=4.22.0" +kiwisolver = ">=1.3.1" +numpy = ">=1.23" +packaging = ">=20.0" +pillow = ">=8" +pyparsing = ">=2.3.1" +python-dateutil = ">=2.7" + +[package.extras] +dev = ["meson-python (>=0.13.1)", "numpy (>=1.25)", "pybind11 (>=2.6)", "setuptools (>=64)", "setuptools_scm (>=7)"] + [[package]] name = "mergedeep" version = "1.3.4" @@ -596,6 +966,24 @@ files = [ {file = "mypy_extensions-1.0.0.tar.gz", hash = "sha256:75dbf8955dc00442a438fc4d0666508a9a97b6bd41aa2f0ffe9d2f2725af0782"}, ] +[[package]] +name = "networkx" +version = "3.3" +description = "Python package for creating and manipulating graphs and networks" +optional = false +python-versions = ">=3.10" +files = [ + {file = "networkx-3.3-py3-none-any.whl", hash = "sha256:28575580c6ebdaf4505b22c6256a2b9de86b316dc63ba9e93abde3d78dfdbcf2"}, + {file = "networkx-3.3.tar.gz", hash = "sha256:0c127d8b2f4865f59ae9cb8aafcd60b5c70f3241ebd66f7defad7c4ab90126c9"}, +] + +[package.extras] +default = ["matplotlib (>=3.6)", "numpy (>=1.23)", "pandas (>=1.4)", "scipy (>=1.9,!=1.11.0,!=1.11.1)"] +developer = ["changelist (==0.5)", "mypy (>=1.1)", "pre-commit (>=3.2)", "rtoml"] +doc = ["myst-nb (>=1.0)", "numpydoc (>=1.7)", "pillow (>=9.4)", "pydata-sphinx-theme (>=0.14)", "sphinx (>=7)", "sphinx-gallery (>=0.14)", "texext (>=0.6.7)"] +extra = ["lxml (>=4.6)", "pydot (>=2.0)", "pygraphviz (>=1.12)", "sympy (>=1.10)"] +test = ["pytest (>=7.2)", "pytest-cov (>=4.0)"] + [[package]] name = "nodeenv" version = "1.9.1" @@ -607,6 +995,84 @@ files = [ {file = "nodeenv-1.9.1.tar.gz", hash = "sha256:6ec12890a2dab7946721edbfbcd91f3319c6ccc9aec47be7c7e6b7011ee6645f"}, ] +[[package]] +name = "numpy" +version = "2.0.1" +description = "Fundamental package for array computing in Python" +optional = false +python-versions = ">=3.9" +files = [ + {file = "numpy-2.0.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:0fbb536eac80e27a2793ffd787895242b7f18ef792563d742c2d673bfcb75134"}, + {file = "numpy-2.0.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:69ff563d43c69b1baba77af455dd0a839df8d25e8590e79c90fcbe1499ebde42"}, + {file = "numpy-2.0.1-cp310-cp310-macosx_14_0_arm64.whl", hash = "sha256:1b902ce0e0a5bb7704556a217c4f63a7974f8f43e090aff03fcf262e0b135e02"}, + {file = "numpy-2.0.1-cp310-cp310-macosx_14_0_x86_64.whl", hash = "sha256:f1659887361a7151f89e79b276ed8dff3d75877df906328f14d8bb40bb4f5101"}, + {file = "numpy-2.0.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4658c398d65d1b25e1760de3157011a80375da861709abd7cef3bad65d6543f9"}, + {file = "numpy-2.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4127d4303b9ac9f94ca0441138acead39928938660ca58329fe156f84b9f3015"}, + {file = "numpy-2.0.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:e5eeca8067ad04bc8a2a8731183d51d7cbaac66d86085d5f4766ee6bf19c7f87"}, + {file = "numpy-2.0.1-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:9adbd9bb520c866e1bfd7e10e1880a1f7749f1f6e5017686a5fbb9b72cf69f82"}, + {file = "numpy-2.0.1-cp310-cp310-win32.whl", hash = "sha256:7b9853803278db3bdcc6cd5beca37815b133e9e77ff3d4733c247414e78eb8d1"}, + {file = "numpy-2.0.1-cp310-cp310-win_amd64.whl", hash = "sha256:81b0893a39bc5b865b8bf89e9ad7807e16717f19868e9d234bdaf9b1f1393868"}, + {file = "numpy-2.0.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:75b4e316c5902d8163ef9d423b1c3f2f6252226d1aa5cd8a0a03a7d01ffc6268"}, + {file = "numpy-2.0.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:6e4eeb6eb2fced786e32e6d8df9e755ce5be920d17f7ce00bc38fcde8ccdbf9e"}, + {file = "numpy-2.0.1-cp311-cp311-macosx_14_0_arm64.whl", hash = "sha256:a1e01dcaab205fbece13c1410253a9eea1b1c9b61d237b6fa59bcc46e8e89343"}, + {file = "numpy-2.0.1-cp311-cp311-macosx_14_0_x86_64.whl", hash = "sha256:a8fc2de81ad835d999113ddf87d1ea2b0f4704cbd947c948d2f5513deafe5a7b"}, + {file = "numpy-2.0.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5a3d94942c331dd4e0e1147f7a8699a4aa47dffc11bf8a1523c12af8b2e91bbe"}, + {file = "numpy-2.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:15eb4eca47d36ec3f78cde0a3a2ee24cf05ca7396ef808dda2c0ddad7c2bde67"}, + {file = "numpy-2.0.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:b83e16a5511d1b1f8a88cbabb1a6f6a499f82c062a4251892d9ad5d609863fb7"}, + {file = "numpy-2.0.1-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:1f87fec1f9bc1efd23f4227becff04bd0e979e23ca50cc92ec88b38489db3b55"}, + {file = "numpy-2.0.1-cp311-cp311-win32.whl", hash = "sha256:36d3a9405fd7c511804dc56fc32974fa5533bdeb3cd1604d6b8ff1d292b819c4"}, + {file = "numpy-2.0.1-cp311-cp311-win_amd64.whl", hash = "sha256:08458fbf403bff5e2b45f08eda195d4b0c9b35682311da5a5a0a0925b11b9bd8"}, + {file = "numpy-2.0.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:6bf4e6f4a2a2e26655717a1983ef6324f2664d7011f6ef7482e8c0b3d51e82ac"}, + {file = "numpy-2.0.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:7d6fddc5fe258d3328cd8e3d7d3e02234c5d70e01ebe377a6ab92adb14039cb4"}, + {file = "numpy-2.0.1-cp312-cp312-macosx_14_0_arm64.whl", hash = "sha256:5daab361be6ddeb299a918a7c0864fa8618af66019138263247af405018b04e1"}, + {file = "numpy-2.0.1-cp312-cp312-macosx_14_0_x86_64.whl", hash = "sha256:ea2326a4dca88e4a274ba3a4405eb6c6467d3ffbd8c7d38632502eaae3820587"}, + {file = "numpy-2.0.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:529af13c5f4b7a932fb0e1911d3a75da204eff023ee5e0e79c1751564221a5c8"}, + {file = "numpy-2.0.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6790654cb13eab303d8402354fabd47472b24635700f631f041bd0b65e37298a"}, + {file = "numpy-2.0.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:cbab9fc9c391700e3e1287666dfd82d8666d10e69a6c4a09ab97574c0b7ee0a7"}, + {file = "numpy-2.0.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:99d0d92a5e3613c33a5f01db206a33f8fdf3d71f2912b0de1739894668b7a93b"}, + {file = "numpy-2.0.1-cp312-cp312-win32.whl", hash = "sha256:173a00b9995f73b79eb0191129f2455f1e34c203f559dd118636858cc452a1bf"}, + {file = "numpy-2.0.1-cp312-cp312-win_amd64.whl", hash = "sha256:bb2124fdc6e62baae159ebcfa368708867eb56806804d005860b6007388df171"}, + {file = "numpy-2.0.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:bfc085b28d62ff4009364e7ca34b80a9a080cbd97c2c0630bb5f7f770dae9414"}, + {file = "numpy-2.0.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:8fae4ebbf95a179c1156fab0b142b74e4ba4204c87bde8d3d8b6f9c34c5825ef"}, + {file = "numpy-2.0.1-cp39-cp39-macosx_14_0_arm64.whl", hash = "sha256:72dc22e9ec8f6eaa206deb1b1355eb2e253899d7347f5e2fae5f0af613741d06"}, + {file = "numpy-2.0.1-cp39-cp39-macosx_14_0_x86_64.whl", hash = "sha256:ec87f5f8aca726117a1c9b7083e7656a9d0d606eec7299cc067bb83d26f16e0c"}, + {file = "numpy-2.0.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1f682ea61a88479d9498bf2091fdcd722b090724b08b31d63e022adc063bad59"}, + {file = "numpy-2.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8efc84f01c1cd7e34b3fb310183e72fcdf55293ee736d679b6d35b35d80bba26"}, + {file = "numpy-2.0.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:3fdabe3e2a52bc4eff8dc7a5044342f8bd9f11ef0934fcd3289a788c0eb10018"}, + {file = "numpy-2.0.1-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:24a0e1befbfa14615b49ba9659d3d8818a0f4d8a1c5822af8696706fbda7310c"}, + {file = "numpy-2.0.1-cp39-cp39-win32.whl", hash = "sha256:f9cf5ea551aec449206954b075db819f52adc1638d46a6738253a712d553c7b4"}, + {file = "numpy-2.0.1-cp39-cp39-win_amd64.whl", hash = "sha256:e9e81fa9017eaa416c056e5d9e71be93d05e2c3c2ab308d23307a8bc4443c368"}, + {file = "numpy-2.0.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:61728fba1e464f789b11deb78a57805c70b2ed02343560456190d0501ba37b0f"}, + {file = "numpy-2.0.1-pp39-pypy39_pp73-macosx_14_0_x86_64.whl", hash = "sha256:12f5d865d60fb9734e60a60f1d5afa6d962d8d4467c120a1c0cda6eb2964437d"}, + {file = "numpy-2.0.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:eacf3291e263d5a67d8c1a581a8ebbcfd6447204ef58828caf69a5e3e8c75990"}, + {file = "numpy-2.0.1-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:2c3a346ae20cfd80b6cfd3e60dc179963ef2ea58da5ec074fd3d9e7a1e7ba97f"}, + {file = "numpy-2.0.1.tar.gz", hash = "sha256:485b87235796410c3519a699cfe1faab097e509e90ebb05dcd098db2ae87e7b3"}, +] + +[[package]] +name = "opencv-python" +version = "4.10.0.84" +description = "Wrapper package for OpenCV python bindings." +optional = false +python-versions = ">=3.6" +files = [ + {file = "opencv-python-4.10.0.84.tar.gz", hash = "sha256:72d234e4582e9658ffea8e9cae5b63d488ad06994ef12d81dc303b17472f3526"}, + {file = "opencv_python-4.10.0.84-cp37-abi3-macosx_11_0_arm64.whl", hash = "sha256:fc182f8f4cda51b45f01c64e4cbedfc2f00aff799debebc305d8d0210c43f251"}, + {file = "opencv_python-4.10.0.84-cp37-abi3-macosx_12_0_x86_64.whl", hash = "sha256:71e575744f1d23f79741450254660442785f45a0797212852ee5199ef12eed98"}, + {file = "opencv_python-4.10.0.84-cp37-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:09a332b50488e2dda866a6c5573ee192fe3583239fb26ff2f7f9ceb0bc119ea6"}, + {file = "opencv_python-4.10.0.84-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9ace140fc6d647fbe1c692bcb2abce768973491222c067c131d80957c595b71f"}, + {file = "opencv_python-4.10.0.84-cp37-abi3-win32.whl", hash = "sha256:2db02bb7e50b703f0a2d50c50ced72e95c574e1e5a0bb35a8a86d0b35c98c236"}, + {file = "opencv_python-4.10.0.84-cp37-abi3-win_amd64.whl", hash = "sha256:32dbbd94c26f611dc5cc6979e6b7aa1f55a64d6b463cc1dcd3c95505a63e48fe"}, +] + +[package.dependencies] +numpy = [ + {version = ">=1.26.0", markers = "python_version >= \"3.12\""}, + {version = ">=1.23.5", markers = "python_version >= \"3.11\" and python_version < \"3.12\""}, + {version = ">=1.21.4", markers = "python_version >= \"3.10\" and platform_system == \"Darwin\" and python_version < \"3.11\""}, + {version = ">=1.21.2", markers = "platform_system != \"Darwin\" and python_version >= \"3.10\" and python_version < \"3.11\""}, +] + [[package]] name = "packaging" version = "24.1" @@ -628,6 +1094,17 @@ files = [ {file = "paginate-0.5.6.tar.gz", hash = "sha256:5e6007b6a9398177a7e1648d04fdd9f8c9766a1a945bceac82f1929e8c78af2d"}, ] +[[package]] +name = "pathlib" +version = "1.0.1" +description = "Object-oriented filesystem paths" +optional = false +python-versions = "*" +files = [ + {file = "pathlib-1.0.1-py3-none-any.whl", hash = "sha256:f35f95ab8b0f59e6d354090350b44a80a80635d22efdedfa84c7ad1cf0a74147"}, + {file = "pathlib-1.0.1.tar.gz", hash = "sha256:6940718dfc3eff4258203ad5021090933e5c04707d5ca8cc9e73c94a7894ea9f"}, +] + [[package]] name = "pathspec" version = "0.12.1" @@ -639,6 +1116,103 @@ files = [ {file = "pathspec-0.12.1.tar.gz", hash = "sha256:a482d51503a1ab33b1c67a6c3813a26953dbdc71c31dacaef9a838c4e29f5712"}, ] +[[package]] +name = "pillow" +version = "10.4.0" +description = "Python Imaging Library (Fork)" +optional = false +python-versions = ">=3.8" +files = [ + {file = "pillow-10.4.0-cp310-cp310-macosx_10_10_x86_64.whl", hash = "sha256:4d9667937cfa347525b319ae34375c37b9ee6b525440f3ef48542fcf66f2731e"}, + {file = "pillow-10.4.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:543f3dc61c18dafb755773efc89aae60d06b6596a63914107f75459cf984164d"}, + {file = "pillow-10.4.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7928ecbf1ece13956b95d9cbcfc77137652b02763ba384d9ab508099a2eca856"}, + {file = "pillow-10.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e4d49b85c4348ea0b31ea63bc75a9f3857869174e2bf17e7aba02945cd218e6f"}, + {file = "pillow-10.4.0-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:6c762a5b0997f5659a5ef2266abc1d8851ad7749ad9a6a5506eb23d314e4f46b"}, + {file = "pillow-10.4.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:a985e028fc183bf12a77a8bbf36318db4238a3ded7fa9df1b9a133f1cb79f8fc"}, + {file = "pillow-10.4.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:812f7342b0eee081eaec84d91423d1b4650bb9828eb53d8511bcef8ce5aecf1e"}, + {file = "pillow-10.4.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:ac1452d2fbe4978c2eec89fb5a23b8387aba707ac72810d9490118817d9c0b46"}, + {file = "pillow-10.4.0-cp310-cp310-win32.whl", hash = "sha256:bcd5e41a859bf2e84fdc42f4edb7d9aba0a13d29a2abadccafad99de3feff984"}, + {file = "pillow-10.4.0-cp310-cp310-win_amd64.whl", hash = "sha256:ecd85a8d3e79cd7158dec1c9e5808e821feea088e2f69a974db5edf84dc53141"}, + {file = "pillow-10.4.0-cp310-cp310-win_arm64.whl", hash = "sha256:ff337c552345e95702c5fde3158acb0625111017d0e5f24bf3acdb9cc16b90d1"}, + {file = "pillow-10.4.0-cp311-cp311-macosx_10_10_x86_64.whl", hash = "sha256:0a9ec697746f268507404647e531e92889890a087e03681a3606d9b920fbee3c"}, + {file = "pillow-10.4.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:dfe91cb65544a1321e631e696759491ae04a2ea11d36715eca01ce07284738be"}, + {file = "pillow-10.4.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5dc6761a6efc781e6a1544206f22c80c3af4c8cf461206d46a1e6006e4429ff3"}, + {file = "pillow-10.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5e84b6cc6a4a3d76c153a6b19270b3526a5a8ed6b09501d3af891daa2a9de7d6"}, + {file = "pillow-10.4.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:bbc527b519bd3aa9d7f429d152fea69f9ad37c95f0b02aebddff592688998abe"}, + {file = "pillow-10.4.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:76a911dfe51a36041f2e756b00f96ed84677cdeb75d25c767f296c1c1eda1319"}, + {file = "pillow-10.4.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:59291fb29317122398786c2d44427bbd1a6d7ff54017075b22be9d21aa59bd8d"}, + {file = "pillow-10.4.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:416d3a5d0e8cfe4f27f574362435bc9bae57f679a7158e0096ad2beb427b8696"}, + {file = "pillow-10.4.0-cp311-cp311-win32.whl", hash = "sha256:7086cc1d5eebb91ad24ded9f58bec6c688e9f0ed7eb3dbbf1e4800280a896496"}, + {file = "pillow-10.4.0-cp311-cp311-win_amd64.whl", hash = "sha256:cbed61494057c0f83b83eb3a310f0bf774b09513307c434d4366ed64f4128a91"}, + {file = "pillow-10.4.0-cp311-cp311-win_arm64.whl", hash = "sha256:f5f0c3e969c8f12dd2bb7e0b15d5c468b51e5017e01e2e867335c81903046a22"}, + {file = "pillow-10.4.0-cp312-cp312-macosx_10_10_x86_64.whl", hash = "sha256:673655af3eadf4df6b5457033f086e90299fdd7a47983a13827acf7459c15d94"}, + {file = "pillow-10.4.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:866b6942a92f56300012f5fbac71f2d610312ee65e22f1aa2609e491284e5597"}, + {file = "pillow-10.4.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:29dbdc4207642ea6aad70fbde1a9338753d33fb23ed6956e706936706f52dd80"}, + {file = "pillow-10.4.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bf2342ac639c4cf38799a44950bbc2dfcb685f052b9e262f446482afaf4bffca"}, + {file = "pillow-10.4.0-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:f5b92f4d70791b4a67157321c4e8225d60b119c5cc9aee8ecf153aace4aad4ef"}, + {file = "pillow-10.4.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:86dcb5a1eb778d8b25659d5e4341269e8590ad6b4e8b44d9f4b07f8d136c414a"}, + {file = "pillow-10.4.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:780c072c2e11c9b2c7ca37f9a2ee8ba66f44367ac3e5c7832afcfe5104fd6d1b"}, + {file = "pillow-10.4.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:37fb69d905be665f68f28a8bba3c6d3223c8efe1edf14cc4cfa06c241f8c81d9"}, + {file = "pillow-10.4.0-cp312-cp312-win32.whl", hash = "sha256:7dfecdbad5c301d7b5bde160150b4db4c659cee2b69589705b6f8a0c509d9f42"}, + {file = "pillow-10.4.0-cp312-cp312-win_amd64.whl", hash = "sha256:1d846aea995ad352d4bdcc847535bd56e0fd88d36829d2c90be880ef1ee4668a"}, + {file = "pillow-10.4.0-cp312-cp312-win_arm64.whl", hash = "sha256:e553cad5179a66ba15bb18b353a19020e73a7921296a7979c4a2b7f6a5cd57f9"}, + {file = "pillow-10.4.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:8bc1a764ed8c957a2e9cacf97c8b2b053b70307cf2996aafd70e91a082e70df3"}, + {file = "pillow-10.4.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:6209bb41dc692ddfee4942517c19ee81b86c864b626dbfca272ec0f7cff5d9fb"}, + {file = "pillow-10.4.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bee197b30783295d2eb680b311af15a20a8b24024a19c3a26431ff83eb8d1f70"}, + {file = "pillow-10.4.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1ef61f5dd14c300786318482456481463b9d6b91ebe5ef12f405afbba77ed0be"}, + {file = "pillow-10.4.0-cp313-cp313-manylinux_2_28_aarch64.whl", hash = "sha256:297e388da6e248c98bc4a02e018966af0c5f92dfacf5a5ca22fa01cb3179bca0"}, + {file = "pillow-10.4.0-cp313-cp313-manylinux_2_28_x86_64.whl", hash = "sha256:e4db64794ccdf6cb83a59d73405f63adbe2a1887012e308828596100a0b2f6cc"}, + {file = "pillow-10.4.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:bd2880a07482090a3bcb01f4265f1936a903d70bc740bfcb1fd4e8a2ffe5cf5a"}, + {file = "pillow-10.4.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:4b35b21b819ac1dbd1233317adeecd63495f6babf21b7b2512d244ff6c6ce309"}, + {file = "pillow-10.4.0-cp313-cp313-win32.whl", hash = "sha256:551d3fd6e9dc15e4c1eb6fc4ba2b39c0c7933fa113b220057a34f4bb3268a060"}, + {file = "pillow-10.4.0-cp313-cp313-win_amd64.whl", hash = "sha256:030abdbe43ee02e0de642aee345efa443740aa4d828bfe8e2eb11922ea6a21ea"}, + {file = "pillow-10.4.0-cp313-cp313-win_arm64.whl", hash = "sha256:5b001114dd152cfd6b23befeb28d7aee43553e2402c9f159807bf55f33af8a8d"}, + {file = "pillow-10.4.0-cp38-cp38-macosx_10_10_x86_64.whl", hash = "sha256:8d4d5063501b6dd4024b8ac2f04962d661222d120381272deea52e3fc52d3736"}, + {file = "pillow-10.4.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:7c1ee6f42250df403c5f103cbd2768a28fe1a0ea1f0f03fe151c8741e1469c8b"}, + {file = "pillow-10.4.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b15e02e9bb4c21e39876698abf233c8c579127986f8207200bc8a8f6bb27acf2"}, + {file = "pillow-10.4.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7a8d4bade9952ea9a77d0c3e49cbd8b2890a399422258a77f357b9cc9be8d680"}, + {file = "pillow-10.4.0-cp38-cp38-manylinux_2_28_aarch64.whl", hash = "sha256:43efea75eb06b95d1631cb784aa40156177bf9dd5b4b03ff38979e048258bc6b"}, + {file = "pillow-10.4.0-cp38-cp38-manylinux_2_28_x86_64.whl", hash = "sha256:950be4d8ba92aca4b2bb0741285a46bfae3ca699ef913ec8416c1b78eadd64cd"}, + {file = "pillow-10.4.0-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:d7480af14364494365e89d6fddc510a13e5a2c3584cb19ef65415ca57252fb84"}, + {file = "pillow-10.4.0-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:73664fe514b34c8f02452ffb73b7a92c6774e39a647087f83d67f010eb9a0cf0"}, + {file = "pillow-10.4.0-cp38-cp38-win32.whl", hash = "sha256:e88d5e6ad0d026fba7bdab8c3f225a69f063f116462c49892b0149e21b6c0a0e"}, + {file = "pillow-10.4.0-cp38-cp38-win_amd64.whl", hash = "sha256:5161eef006d335e46895297f642341111945e2c1c899eb406882a6c61a4357ab"}, + {file = "pillow-10.4.0-cp39-cp39-macosx_10_10_x86_64.whl", hash = "sha256:0ae24a547e8b711ccaaf99c9ae3cd975470e1a30caa80a6aaee9a2f19c05701d"}, + {file = "pillow-10.4.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:298478fe4f77a4408895605f3482b6cc6222c018b2ce565c2b6b9c354ac3229b"}, + {file = "pillow-10.4.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:134ace6dc392116566980ee7436477d844520a26a4b1bd4053f6f47d096997fd"}, + {file = "pillow-10.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:930044bb7679ab003b14023138b50181899da3f25de50e9dbee23b61b4de2126"}, + {file = "pillow-10.4.0-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:c76e5786951e72ed3686e122d14c5d7012f16c8303a674d18cdcd6d89557fc5b"}, + {file = "pillow-10.4.0-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:b2724fdb354a868ddf9a880cb84d102da914e99119211ef7ecbdc613b8c96b3c"}, + {file = "pillow-10.4.0-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:dbc6ae66518ab3c5847659e9988c3b60dc94ffb48ef9168656e0019a93dbf8a1"}, + {file = "pillow-10.4.0-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:06b2f7898047ae93fad74467ec3d28fe84f7831370e3c258afa533f81ef7f3df"}, + {file = "pillow-10.4.0-cp39-cp39-win32.whl", hash = "sha256:7970285ab628a3779aecc35823296a7869f889b8329c16ad5a71e4901a3dc4ef"}, + {file = "pillow-10.4.0-cp39-cp39-win_amd64.whl", hash = "sha256:961a7293b2457b405967af9c77dcaa43cc1a8cd50d23c532e62d48ab6cdd56f5"}, + {file = "pillow-10.4.0-cp39-cp39-win_arm64.whl", hash = "sha256:32cda9e3d601a52baccb2856b8ea1fc213c90b340c542dcef77140dfa3278a9e"}, + {file = "pillow-10.4.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:5b4815f2e65b30f5fbae9dfffa8636d992d49705723fe86a3661806e069352d4"}, + {file = "pillow-10.4.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:8f0aef4ef59694b12cadee839e2ba6afeab89c0f39a3adc02ed51d109117b8da"}, + {file = "pillow-10.4.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9f4727572e2918acaa9077c919cbbeb73bd2b3ebcfe033b72f858fc9fbef0026"}, + {file = "pillow-10.4.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ff25afb18123cea58a591ea0244b92eb1e61a1fd497bf6d6384f09bc3262ec3e"}, + {file = "pillow-10.4.0-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:dc3e2db6ba09ffd7d02ae9141cfa0ae23393ee7687248d46a7507b75d610f4f5"}, + {file = "pillow-10.4.0-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:02a2be69f9c9b8c1e97cf2713e789d4e398c751ecfd9967c18d0ce304efbf885"}, + {file = "pillow-10.4.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:0755ffd4a0c6f267cccbae2e9903d95477ca2f77c4fcf3a3a09570001856c8a5"}, + {file = "pillow-10.4.0-pp39-pypy39_pp73-macosx_10_15_x86_64.whl", hash = "sha256:a02364621fe369e06200d4a16558e056fe2805d3468350df3aef21e00d26214b"}, + {file = "pillow-10.4.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:1b5dea9831a90e9d0721ec417a80d4cbd7022093ac38a568db2dd78363b00908"}, + {file = "pillow-10.4.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9b885f89040bb8c4a1573566bbb2f44f5c505ef6e74cec7ab9068c900047f04b"}, + {file = "pillow-10.4.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:87dd88ded2e6d74d31e1e0a99a726a6765cda32d00ba72dc37f0651f306daaa8"}, + {file = "pillow-10.4.0-pp39-pypy39_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:2db98790afc70118bd0255c2eeb465e9767ecf1f3c25f9a1abb8ffc8cfd1fe0a"}, + {file = "pillow-10.4.0-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:f7baece4ce06bade126fb84b8af1c33439a76d8a6fd818970215e0560ca28c27"}, + {file = "pillow-10.4.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:cfdd747216947628af7b259d274771d84db2268ca062dd5faf373639d00113a3"}, + {file = "pillow-10.4.0.tar.gz", hash = "sha256:166c1cd4d24309b30d61f79f4a9114b7b2313d7450912277855ff5dfd7cd4a06"}, +] + +[package.extras] +docs = ["furo", "olefile", "sphinx (>=7.3)", "sphinx-copybutton", "sphinx-inline-tabs", "sphinxext-opengraph"] +fpx = ["olefile"] +mic = ["olefile"] +tests = ["check-manifest", "coverage", "defusedxml", "markdown2", "olefile", "packaging", "pyroma", "pytest", "pytest-cov", "pytest-timeout"] +typing = ["typing-extensions"] +xmp = ["defusedxml"] + [[package]] name = "platformdirs" version = "4.2.2" @@ -688,6 +1262,129 @@ nodeenv = ">=0.11.1" pyyaml = ">=5.1" virtualenv = ">=20.10.0" +[[package]] +name = "pydantic" +version = "2.8.2" +description = "Data validation using Python type hints" +optional = false +python-versions = ">=3.8" +files = [ + {file = "pydantic-2.8.2-py3-none-any.whl", hash = "sha256:73ee9fddd406dc318b885c7a2eab8a6472b68b8fb5ba8150949fc3db939f23c8"}, + {file = "pydantic-2.8.2.tar.gz", hash = "sha256:6f62c13d067b0755ad1c21a34bdd06c0c12625a22b0fc09c6b149816604f7c2a"}, +] + +[package.dependencies] +annotated-types = ">=0.4.0" +pydantic-core = "2.20.1" +typing-extensions = [ + {version = ">=4.12.2", markers = "python_version >= \"3.13\""}, + {version = ">=4.6.1", markers = "python_version < \"3.13\""}, +] + +[package.extras] +email = ["email-validator (>=2.0.0)"] + +[[package]] +name = "pydantic-core" +version = "2.20.1" +description = "Core functionality for Pydantic validation and serialization" +optional = false +python-versions = ">=3.8" +files = [ + {file = "pydantic_core-2.20.1-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:3acae97ffd19bf091c72df4d726d552c473f3576409b2a7ca36b2f535ffff4a3"}, + {file = "pydantic_core-2.20.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:41f4c96227a67a013e7de5ff8f20fb496ce573893b7f4f2707d065907bffdbd6"}, + {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5f239eb799a2081495ea659d8d4a43a8f42cd1fe9ff2e7e436295c38a10c286a"}, + {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:53e431da3fc53360db73eedf6f7124d1076e1b4ee4276b36fb25514544ceb4a3"}, + {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f1f62b2413c3a0e846c3b838b2ecd6c7a19ec6793b2a522745b0869e37ab5bc1"}, + {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5d41e6daee2813ecceea8eda38062d69e280b39df793f5a942fa515b8ed67953"}, + {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3d482efec8b7dc6bfaedc0f166b2ce349df0011f5d2f1f25537ced4cfc34fd98"}, + {file = "pydantic_core-2.20.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:e93e1a4b4b33daed65d781a57a522ff153dcf748dee70b40c7258c5861e1768a"}, + {file = "pydantic_core-2.20.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:e7c4ea22b6739b162c9ecaaa41d718dfad48a244909fe7ef4b54c0b530effc5a"}, + {file = "pydantic_core-2.20.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:4f2790949cf385d985a31984907fecb3896999329103df4e4983a4a41e13e840"}, + {file = "pydantic_core-2.20.1-cp310-none-win32.whl", hash = "sha256:5e999ba8dd90e93d57410c5e67ebb67ffcaadcea0ad973240fdfd3a135506250"}, + {file = "pydantic_core-2.20.1-cp310-none-win_amd64.whl", hash = "sha256:512ecfbefef6dac7bc5eaaf46177b2de58cdf7acac8793fe033b24ece0b9566c"}, + {file = "pydantic_core-2.20.1-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:d2a8fa9d6d6f891f3deec72f5cc668e6f66b188ab14bb1ab52422fe8e644f312"}, + {file = "pydantic_core-2.20.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:175873691124f3d0da55aeea1d90660a6ea7a3cfea137c38afa0a5ffabe37b88"}, + {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:37eee5b638f0e0dcd18d21f59b679686bbd18917b87db0193ae36f9c23c355fc"}, + {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:25e9185e2d06c16ee438ed39bf62935ec436474a6ac4f9358524220f1b236e43"}, + {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:150906b40ff188a3260cbee25380e7494ee85048584998c1e66df0c7a11c17a6"}, + {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8ad4aeb3e9a97286573c03df758fc7627aecdd02f1da04516a86dc159bf70121"}, + {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d3f3ed29cd9f978c604708511a1f9c2fdcb6c38b9aae36a51905b8811ee5cbf1"}, + {file = "pydantic_core-2.20.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:b0dae11d8f5ded51699c74d9548dcc5938e0804cc8298ec0aa0da95c21fff57b"}, + {file = "pydantic_core-2.20.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:faa6b09ee09433b87992fb5a2859efd1c264ddc37280d2dd5db502126d0e7f27"}, + {file = "pydantic_core-2.20.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:9dc1b507c12eb0481d071f3c1808f0529ad41dc415d0ca11f7ebfc666e66a18b"}, + {file = "pydantic_core-2.20.1-cp311-none-win32.whl", hash = "sha256:fa2fddcb7107e0d1808086ca306dcade7df60a13a6c347a7acf1ec139aa6789a"}, + {file = "pydantic_core-2.20.1-cp311-none-win_amd64.whl", hash = "sha256:40a783fb7ee353c50bd3853e626f15677ea527ae556429453685ae32280c19c2"}, + {file = "pydantic_core-2.20.1-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:595ba5be69b35777474fa07f80fc260ea71255656191adb22a8c53aba4479231"}, + {file = "pydantic_core-2.20.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:a4f55095ad087474999ee28d3398bae183a66be4823f753cd7d67dd0153427c9"}, + {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f9aa05d09ecf4c75157197f27cdc9cfaeb7c5f15021c6373932bf3e124af029f"}, + {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:e97fdf088d4b31ff4ba35db26d9cc472ac7ef4a2ff2badeabf8d727b3377fc52"}, + {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bc633a9fe1eb87e250b5c57d389cf28998e4292336926b0b6cdaee353f89a237"}, + {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d573faf8eb7e6b1cbbcb4f5b247c60ca8be39fe2c674495df0eb4318303137fe"}, + {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:26dc97754b57d2fd00ac2b24dfa341abffc380b823211994c4efac7f13b9e90e"}, + {file = "pydantic_core-2.20.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:33499e85e739a4b60c9dac710c20a08dc73cb3240c9a0e22325e671b27b70d24"}, + {file = "pydantic_core-2.20.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:bebb4d6715c814597f85297c332297c6ce81e29436125ca59d1159b07f423eb1"}, + {file = "pydantic_core-2.20.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:516d9227919612425c8ef1c9b869bbbee249bc91912c8aaffb66116c0b447ebd"}, + {file = "pydantic_core-2.20.1-cp312-none-win32.whl", hash = "sha256:469f29f9093c9d834432034d33f5fe45699e664f12a13bf38c04967ce233d688"}, + {file = "pydantic_core-2.20.1-cp312-none-win_amd64.whl", hash = "sha256:035ede2e16da7281041f0e626459bcae33ed998cca6a0a007a5ebb73414ac72d"}, + {file = "pydantic_core-2.20.1-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:0827505a5c87e8aa285dc31e9ec7f4a17c81a813d45f70b1d9164e03a813a686"}, + {file = "pydantic_core-2.20.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:19c0fa39fa154e7e0b7f82f88ef85faa2a4c23cc65aae2f5aea625e3c13c735a"}, + {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4aa223cd1e36b642092c326d694d8bf59b71ddddc94cdb752bbbb1c5c91d833b"}, + {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:c336a6d235522a62fef872c6295a42ecb0c4e1d0f1a3e500fe949415761b8a19"}, + {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7eb6a0587eded33aeefea9f916899d42b1799b7b14b8f8ff2753c0ac1741edac"}, + {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:70c8daf4faca8da5a6d655f9af86faf6ec2e1768f4b8b9d0226c02f3d6209703"}, + {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e9fa4c9bf273ca41f940bceb86922a7667cd5bf90e95dbb157cbb8441008482c"}, + {file = "pydantic_core-2.20.1-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:11b71d67b4725e7e2a9f6e9c0ac1239bbc0c48cce3dc59f98635efc57d6dac83"}, + {file = "pydantic_core-2.20.1-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:270755f15174fb983890c49881e93f8f1b80f0b5e3a3cc1394a255706cabd203"}, + {file = "pydantic_core-2.20.1-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:c81131869240e3e568916ef4c307f8b99583efaa60a8112ef27a366eefba8ef0"}, + {file = "pydantic_core-2.20.1-cp313-none-win32.whl", hash = "sha256:b91ced227c41aa29c672814f50dbb05ec93536abf8f43cd14ec9521ea09afe4e"}, + {file = "pydantic_core-2.20.1-cp313-none-win_amd64.whl", hash = "sha256:65db0f2eefcaad1a3950f498aabb4875c8890438bc80b19362cf633b87a8ab20"}, + {file = "pydantic_core-2.20.1-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:4745f4ac52cc6686390c40eaa01d48b18997cb130833154801a442323cc78f91"}, + {file = "pydantic_core-2.20.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:a8ad4c766d3f33ba8fd692f9aa297c9058970530a32c728a2c4bfd2616d3358b"}, + {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:41e81317dd6a0127cabce83c0c9c3fbecceae981c8391e6f1dec88a77c8a569a"}, + {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:04024d270cf63f586ad41fff13fde4311c4fc13ea74676962c876d9577bcc78f"}, + {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:eaad4ff2de1c3823fddf82f41121bdf453d922e9a238642b1dedb33c4e4f98ad"}, + {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:26ab812fa0c845df815e506be30337e2df27e88399b985d0bb4e3ecfe72df31c"}, + {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3c5ebac750d9d5f2706654c638c041635c385596caf68f81342011ddfa1e5598"}, + {file = "pydantic_core-2.20.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2aafc5a503855ea5885559eae883978c9b6d8c8993d67766ee73d82e841300dd"}, + {file = "pydantic_core-2.20.1-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:4868f6bd7c9d98904b748a2653031fc9c2f85b6237009d475b1008bfaeb0a5aa"}, + {file = "pydantic_core-2.20.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:aa2f457b4af386254372dfa78a2eda2563680d982422641a85f271c859df1987"}, + {file = "pydantic_core-2.20.1-cp38-none-win32.whl", hash = "sha256:225b67a1f6d602de0ce7f6c1c3ae89a4aa25d3de9be857999e9124f15dab486a"}, + {file = "pydantic_core-2.20.1-cp38-none-win_amd64.whl", hash = "sha256:6b507132dcfc0dea440cce23ee2182c0ce7aba7054576efc65634f080dbe9434"}, + {file = "pydantic_core-2.20.1-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:b03f7941783b4c4a26051846dea594628b38f6940a2fdc0df00b221aed39314c"}, + {file = "pydantic_core-2.20.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:1eedfeb6089ed3fad42e81a67755846ad4dcc14d73698c120a82e4ccf0f1f9f6"}, + {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:635fee4e041ab9c479e31edda27fcf966ea9614fff1317e280d99eb3e5ab6fe2"}, + {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:77bf3ac639c1ff567ae3b47f8d4cc3dc20f9966a2a6dd2311dcc055d3d04fb8a"}, + {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7ed1b0132f24beeec5a78b67d9388656d03e6a7c837394f99257e2d55b461611"}, + {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c6514f963b023aeee506678a1cf821fe31159b925c4b76fe2afa94cc70b3222b"}, + {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:10d4204d8ca33146e761c79f83cc861df20e7ae9f6487ca290a97702daf56006"}, + {file = "pydantic_core-2.20.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2d036c7187b9422ae5b262badb87a20a49eb6c5238b2004e96d4da1231badef1"}, + {file = "pydantic_core-2.20.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:9ebfef07dbe1d93efb94b4700f2d278494e9162565a54f124c404a5656d7ff09"}, + {file = "pydantic_core-2.20.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:6b9d9bb600328a1ce523ab4f454859e9d439150abb0906c5a1983c146580ebab"}, + {file = "pydantic_core-2.20.1-cp39-none-win32.whl", hash = "sha256:784c1214cb6dd1e3b15dd8b91b9a53852aed16671cc3fbe4786f4f1db07089e2"}, + {file = "pydantic_core-2.20.1-cp39-none-win_amd64.whl", hash = "sha256:d2fe69c5434391727efa54b47a1e7986bb0186e72a41b203df8f5b0a19a4f669"}, + {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:a45f84b09ac9c3d35dfcf6a27fd0634d30d183205230a0ebe8373a0e8cfa0906"}, + {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:d02a72df14dfdbaf228424573a07af10637bd490f0901cee872c4f434a735b94"}, + {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d2b27e6af28f07e2f195552b37d7d66b150adbaa39a6d327766ffd695799780f"}, + {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:084659fac3c83fd674596612aeff6041a18402f1e1bc19ca39e417d554468482"}, + {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:242b8feb3c493ab78be289c034a1f659e8826e2233786e36f2893a950a719bb6"}, + {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:38cf1c40a921d05c5edc61a785c0ddb4bed67827069f535d794ce6bcded919fc"}, + {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:e0bbdd76ce9aa5d4209d65f2b27fc6e5ef1312ae6c5333c26db3f5ade53a1e99"}, + {file = "pydantic_core-2.20.1-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:254ec27fdb5b1ee60684f91683be95e5133c994cc54e86a0b0963afa25c8f8a6"}, + {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:407653af5617f0757261ae249d3fba09504d7a71ab36ac057c938572d1bc9331"}, + {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:c693e916709c2465b02ca0ad7b387c4f8423d1db7b4649c551f27a529181c5ad"}, + {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5b5ff4911aea936a47d9376fd3ab17e970cc543d1b68921886e7f64bd28308d1"}, + {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:177f55a886d74f1808763976ac4efd29b7ed15c69f4d838bbd74d9d09cf6fa86"}, + {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:964faa8a861d2664f0c7ab0c181af0bea66098b1919439815ca8803ef136fc4e"}, + {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:4dd484681c15e6b9a977c785a345d3e378d72678fd5f1f3c0509608da24f2ac0"}, + {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:f6d6cff3538391e8486a431569b77921adfcdef14eb18fbf19b7c0a5294d4e6a"}, + {file = "pydantic_core-2.20.1-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:a6d511cc297ff0883bc3708b465ff82d7560193169a8b93260f74ecb0a5e08a7"}, + {file = "pydantic_core-2.20.1.tar.gz", hash = "sha256:26ca695eeee5f9f1aeeb211ffc12f10bcb6f71e2989988fda61dabd65db878d4"}, +] + +[package.dependencies] +typing-extensions = ">=4.6.0,<4.7.0 || >4.7.0" + [[package]] name = "pygments" version = "2.18.0" @@ -720,6 +1417,20 @@ pyyaml = "*" [package.extras] extra = ["pygments (>=2.12)"] +[[package]] +name = "pyparsing" +version = "3.1.2" +description = "pyparsing module - Classes and methods to define and execute parsing grammars" +optional = false +python-versions = ">=3.6.8" +files = [ + {file = "pyparsing-3.1.2-py3-none-any.whl", hash = "sha256:f9db75911801ed778fe61bb643079ff86601aca99fcae6345aa67292038fb742"}, + {file = "pyparsing-3.1.2.tar.gz", hash = "sha256:a1bac0ce561155ecc3ed78ca94d3c9378656ad4c94c1270de543f621420f94ad"}, +] + +[package.extras] +diagrams = ["jinja2", "railroad-diagrams"] + [[package]] name = "pytest" version = "8.2.2" @@ -1021,6 +1732,96 @@ files = [ {file = "ruff-0.5.2.tar.gz", hash = "sha256:2c0df2d2de685433794a14d8d2e240df619b748fbe3367346baa519d8e6f1ca2"}, ] +[[package]] +name = "scikit-image" +version = "0.24.0" +description = "Image processing in Python" +optional = false +python-versions = ">=3.9" +files = [ + {file = "scikit_image-0.24.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:cb3bc0264b6ab30b43c4179ee6156bc18b4861e78bb329dd8d16537b7bbf827a"}, + {file = "scikit_image-0.24.0-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:9c7a52e20cdd760738da38564ba1fed7942b623c0317489af1a598a8dedf088b"}, + {file = "scikit_image-0.24.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:93f46e6ce42e5409f4d09ce1b0c7f80dd7e4373bcec635b6348b63e3c886eac8"}, + {file = "scikit_image-0.24.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:39ee0af13435c57351a3397eb379e72164ff85161923eec0c38849fecf1b4764"}, + {file = "scikit_image-0.24.0-cp310-cp310-win_amd64.whl", hash = "sha256:7ac7913b028b8aa780ffae85922894a69e33d1c0bf270ea1774f382fe8bf95e7"}, + {file = "scikit_image-0.24.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:272909e02a59cea3ed4aa03739bb88df2625daa809f633f40b5053cf09241831"}, + {file = "scikit_image-0.24.0-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:190ebde80b4470fe8838764b9b15f232a964f1a20391663e31008d76f0c696f7"}, + {file = "scikit_image-0.24.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:59c98cc695005faf2b79904e4663796c977af22586ddf1b12d6af2fa22842dc2"}, + {file = "scikit_image-0.24.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fa27b3a0dbad807b966b8db2d78da734cb812ca4787f7fbb143764800ce2fa9c"}, + {file = "scikit_image-0.24.0-cp311-cp311-win_amd64.whl", hash = "sha256:dacf591ac0c272a111181afad4b788a27fe70d213cfddd631d151cbc34f8ca2c"}, + {file = "scikit_image-0.24.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:6fccceb54c9574590abcddc8caf6cefa57c13b5b8b4260ab3ff88ad8f3c252b3"}, + {file = "scikit_image-0.24.0-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:ccc01e4760d655aab7601c1ba7aa4ddd8b46f494ac46ec9c268df6f33ccddf4c"}, + {file = "scikit_image-0.24.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:18836a18d3a7b6aca5376a2d805f0045826bc6c9fc85331659c33b4813e0b563"}, + {file = "scikit_image-0.24.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8579bda9c3f78cb3b3ed8b9425213c53a25fa7e994b7ac01f2440b395babf660"}, + {file = "scikit_image-0.24.0-cp312-cp312-win_amd64.whl", hash = "sha256:82ab903afa60b2da1da2e6f0c8c65e7c8868c60a869464c41971da929b3e82bc"}, + {file = "scikit_image-0.24.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:ef04360eda372ee5cd60aebe9be91258639c86ae2ea24093fb9182118008d009"}, + {file = "scikit_image-0.24.0-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:e9aadb442360a7e76f0c5c9d105f79a83d6df0e01e431bd1d5757e2c5871a1f3"}, + {file = "scikit_image-0.24.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5e37de6f4c1abcf794e13c258dc9b7d385d5be868441de11c180363824192ff7"}, + {file = "scikit_image-0.24.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4688c18bd7ec33c08d7bf0fd19549be246d90d5f2c1d795a89986629af0a1e83"}, + {file = "scikit_image-0.24.0-cp39-cp39-win_amd64.whl", hash = "sha256:56dab751d20b25d5d3985e95c9b4e975f55573554bd76b0aedf5875217c93e69"}, + {file = "scikit_image-0.24.0.tar.gz", hash = "sha256:5d16efe95da8edbeb363e0c4157b99becbd650a60b77f6e3af5768b66cf007ab"}, +] + +[package.dependencies] +imageio = ">=2.33" +lazy-loader = ">=0.4" +networkx = ">=2.8" +numpy = ">=1.23" +packaging = ">=21" +pillow = ">=9.1" +scipy = ">=1.9" +tifffile = ">=2022.8.12" + +[package.extras] +build = ["Cython (>=3.0.4)", "build", "meson-python (>=0.15)", "ninja", "numpy (>=2.0.0rc1)", "packaging (>=21)", "pythran", "setuptools (>=67)", "spin (==0.8)", "wheel"] +data = ["pooch (>=1.6.0)"] +developer = ["ipython", "pre-commit", "tomli"] +docs = ["PyWavelets (>=1.1.1)", "dask[array] (>=2022.9.2)", "ipykernel", "ipywidgets", "kaleido", "matplotlib (>=3.6)", "myst-parser", "numpydoc (>=1.7)", "pandas (>=1.5)", "plotly (>=5.10)", "pooch (>=1.6)", "pydata-sphinx-theme (>=0.15.2)", "pytest-doctestplus", "pytest-runner", "scikit-learn (>=1.1)", "seaborn (>=0.11)", "sphinx (>=7.3)", "sphinx-copybutton", "sphinx-gallery (>=0.14)", "sphinx_design (>=0.5)", "tifffile (>=2022.8.12)"] +optional = ["PyWavelets (>=1.1.1)", "SimpleITK", "astropy (>=5.0)", "cloudpickle (>=0.2.1)", "dask[array] (>=2021.1.0)", "matplotlib (>=3.6)", "pooch (>=1.6.0)", "pyamg", "scikit-learn (>=1.1)"] +test = ["asv", "numpydoc (>=1.7)", "pooch (>=1.6.0)", "pytest (>=7.0)", "pytest-cov (>=2.11.0)", "pytest-doctestplus", "pytest-faulthandler", "pytest-localserver"] + +[[package]] +name = "scipy" +version = "1.14.0" +description = "Fundamental algorithms for scientific computing in Python" +optional = false +python-versions = ">=3.10" +files = [ + {file = "scipy-1.14.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:7e911933d54ead4d557c02402710c2396529540b81dd554fc1ba270eb7308484"}, + {file = "scipy-1.14.0-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:687af0a35462402dd851726295c1a5ae5f987bd6e9026f52e9505994e2f84ef6"}, + {file = "scipy-1.14.0-cp310-cp310-macosx_14_0_arm64.whl", hash = "sha256:07e179dc0205a50721022344fb85074f772eadbda1e1b3eecdc483f8033709b7"}, + {file = "scipy-1.14.0-cp310-cp310-macosx_14_0_x86_64.whl", hash = "sha256:6a9c9a9b226d9a21e0a208bdb024c3982932e43811b62d202aaf1bb59af264b1"}, + {file = "scipy-1.14.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:076c27284c768b84a45dcf2e914d4000aac537da74236a0d45d82c6fa4b7b3c0"}, + {file = "scipy-1.14.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:42470ea0195336df319741e230626b6225a740fd9dce9642ca13e98f667047c0"}, + {file = "scipy-1.14.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:176c6f0d0470a32f1b2efaf40c3d37a24876cebf447498a4cefb947a79c21e9d"}, + {file = "scipy-1.14.0-cp310-cp310-win_amd64.whl", hash = "sha256:ad36af9626d27a4326c8e884917b7ec321d8a1841cd6dacc67d2a9e90c2f0359"}, + {file = "scipy-1.14.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:6d056a8709ccda6cf36cdd2eac597d13bc03dba38360f418560a93050c76a16e"}, + {file = "scipy-1.14.0-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:f0a50da861a7ec4573b7c716b2ebdcdf142b66b756a0d392c236ae568b3a93fb"}, + {file = "scipy-1.14.0-cp311-cp311-macosx_14_0_arm64.whl", hash = "sha256:94c164a9e2498e68308e6e148646e486d979f7fcdb8b4cf34b5441894bdb9caf"}, + {file = "scipy-1.14.0-cp311-cp311-macosx_14_0_x86_64.whl", hash = "sha256:a7d46c3e0aea5c064e734c3eac5cf9eb1f8c4ceee756262f2c7327c4c2691c86"}, + {file = "scipy-1.14.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9eee2989868e274aae26125345584254d97c56194c072ed96cb433f32f692ed8"}, + {file = "scipy-1.14.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9e3154691b9f7ed73778d746da2df67a19d046a6c8087c8b385bc4cdb2cfca74"}, + {file = "scipy-1.14.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:c40003d880f39c11c1edbae8144e3813904b10514cd3d3d00c277ae996488cdb"}, + {file = "scipy-1.14.0-cp311-cp311-win_amd64.whl", hash = "sha256:5b083c8940028bb7e0b4172acafda6df762da1927b9091f9611b0bcd8676f2bc"}, + {file = "scipy-1.14.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:bff2438ea1330e06e53c424893ec0072640dac00f29c6a43a575cbae4c99b2b9"}, + {file = "scipy-1.14.0-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:bbc0471b5f22c11c389075d091d3885693fd3f5e9a54ce051b46308bc787e5d4"}, + {file = "scipy-1.14.0-cp312-cp312-macosx_14_0_arm64.whl", hash = "sha256:64b2ff514a98cf2bb734a9f90d32dc89dc6ad4a4a36a312cd0d6327170339eb0"}, + {file = "scipy-1.14.0-cp312-cp312-macosx_14_0_x86_64.whl", hash = "sha256:7d3da42fbbbb860211a811782504f38ae7aaec9de8764a9bef6b262de7a2b50f"}, + {file = "scipy-1.14.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d91db2c41dd6c20646af280355d41dfa1ec7eead235642178bd57635a3f82209"}, + {file = "scipy-1.14.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a01cc03bcdc777c9da3cfdcc74b5a75caffb48a6c39c8450a9a05f82c4250a14"}, + {file = "scipy-1.14.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:65df4da3c12a2bb9ad52b86b4dcf46813e869afb006e58be0f516bc370165159"}, + {file = "scipy-1.14.0-cp312-cp312-win_amd64.whl", hash = "sha256:4c4161597c75043f7154238ef419c29a64ac4a7c889d588ea77690ac4d0d9b20"}, + {file = "scipy-1.14.0.tar.gz", hash = "sha256:b5923f48cb840380f9854339176ef21763118a7300a88203ccd0bdd26e58527b"}, +] + +[package.dependencies] +numpy = ">=1.23.5,<2.3" + +[package.extras] +dev = ["cython-lint (>=0.12.2)", "doit (>=0.36.0)", "mypy (==1.10.0)", "pycodestyle", "pydevtool", "rich-click", "ruff (>=0.0.292)", "types-psutil", "typing_extensions"] +doc = ["jupyterlite-pyodide-kernel", "jupyterlite-sphinx (>=0.13.1)", "jupytext", "matplotlib (>=3.5)", "myst-nb", "numpydoc", "pooch", "pydata-sphinx-theme (>=0.15.2)", "sphinx (>=5.0.0)", "sphinx-design (>=0.4.0)"] +test = ["Cython", "array-api-strict", "asv", "gmpy2", "hypothesis (>=6.30)", "meson", "mpmath", "ninja", "pooch", "pytest", "pytest-cov", "pytest-timeout", "pytest-xdist", "scikit-umfpack", "threadpoolctl"] + [[package]] name = "six" version = "1.16.0" @@ -1032,6 +1833,39 @@ files = [ {file = "six-1.16.0.tar.gz", hash = "sha256:1e61c37477a1626458e36f7b1d82aa5c9b094fa4802892072e49de9c60c4c926"}, ] +[[package]] +name = "tifffile" +version = "2024.8.10" +description = "Read and write TIFF files" +optional = false +python-versions = ">=3.9" +files = [ + {file = "tifffile-2024.8.10-py3-none-any.whl", hash = "sha256:1c224564fa92e7e9f9a0ed65880b2ece97c3f0d10029ffbebfa5e62b3f6b343d"}, + {file = "tifffile-2024.8.10.tar.gz", hash = "sha256:fdc12124f1478a07b1524641dc6b50cf6bde0483011a63fd2a773094090c3dcf"}, +] + +[package.dependencies] +numpy = "*" + +[package.extras] +all = ["defusedxml", "fsspec", "imagecodecs (>=2023.8.12)", "lxml", "matplotlib", "zarr"] +codecs = ["imagecodecs (>=2023.8.12)"] +plot = ["matplotlib"] +test = ["cmapfile", "czifile", "dask", "defusedxml", "fsspec", "imagecodecs", "lfdfiles", "lxml", "ndtiff", "oiffile", "psdtags", "pytest", "roifile", "xarray", "zarr"] +xml = ["defusedxml", "lxml"] +zarr = ["fsspec", "zarr"] + +[[package]] +name = "toml" +version = "0.10.2" +description = "Python Library for Tom's Obvious, Minimal Language" +optional = false +python-versions = ">=2.6, !=3.0.*, !=3.1.*, !=3.2.*" +files = [ + {file = "toml-0.10.2-py2.py3-none-any.whl", hash = "sha256:806143ae5bfb6a3c6e736a764057db0e6a0e05e338b5630894a5f779cabb4f9b"}, + {file = "toml-0.10.2.tar.gz", hash = "sha256:b3bda1d108d5dd99f4a20d24d9c348e91c4db7ab1b749200bded2f839ccbe68f"}, +] + [[package]] name = "tomli" version = "2.0.1" @@ -1043,6 +1877,17 @@ files = [ {file = "tomli-2.0.1.tar.gz", hash = "sha256:de526c12914f0c550d15924c62d72abc48d6fe7364aa87328337a31007fe8a4f"}, ] +[[package]] +name = "types-toml" +version = "0.10.8.20240310" +description = "Typing stubs for toml" +optional = false +python-versions = ">=3.8" +files = [ + {file = "types-toml-0.10.8.20240310.tar.gz", hash = "sha256:3d41501302972436a6b8b239c850b26689657e25281b48ff0ec06345b8830331"}, + {file = "types_toml-0.10.8.20240310-py3-none-any.whl", hash = "sha256:627b47775d25fa29977d9c70dc0cbab3f314f32c8d8d0c012f2ef5de7aaec05d"}, +] + [[package]] name = "typing-extensions" version = "4.12.2" @@ -1138,4 +1983,4 @@ watchmedo = ["PyYAML (>=3.10)"] [metadata] lock-version = "2.0" python-versions = "^3.10" -content-hash = "e8abd3bdd438c75c7770f41870a8c050f2824284d2bb0bf9180552b35a59950d" +content-hash = "0f151e30f9dff59463c7635ecb20c77817fdca510ad5fd7a9db13f05a23e79ae" diff --git a/pyproject.toml b/pyproject.toml index 7f80c4a..a35802e 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -9,28 +9,39 @@ authors = [ [tool.poetry.dependencies] python = "^3.10" +matplotlib = "^3.9.1.post1" +toml = "^0.10.2" +numpy = "^2.0.1" +scikit-image = "^0.24.0" +scipy = "^1.14.0" +pydantic = "^2.8.2" +pathlib = "^1.0.1" +typing-extensions = "^4.12.2" +opencv-python = "^4.10.0.84" -[tool.poetry.dev-dependencies] +[tool.poetry.group.docs.dependencies] +mkdocs = "^1.6.0" +mkdocs-material = "^9.5.29" + +[tool.poetry.group.dev.dependencies] pytest = "^8.2" pytest-cov = "^5.0.0" pytest-mypy = "^0.10.0" pytest-mock = "^3.7.0" pre-commit = "^3.0.4" ruff = "^0.5.2" - -[tool.poetry.group.docs.dependencies] -mkdocs = "^1.6.0" -mkdocs-material = "^9.5.29" +types-toml = "^0.10.8.20240310" [build-system] requires = ["poetry-core>=1.0.0"] build-backend = "poetry.core.masonry.api" [tool.mypy] +ignore_missing_imports = true disallow_any_explicit = true disallow_any_generics = true warn_unreachable = true -warn_unused_ignores = true +warn_unused_ignores = false disallow_untyped_defs = true exclude = [".venv/"] diff --git a/tests/calibration_files/config.toml b/tests/calibration_files/config.toml index 1ab4b08..18bed01 100644 --- a/tests/calibration_files/config.toml +++ b/tests/calibration_files/config.toml @@ -1,5 +1,5 @@ -# Config file for bubble analyser - -[image_resolution] -value = 183.06589 -units = "px/mm" +# Config file for bubble analyser + +[image_resolution] +value = 183.06589 +units = "px/mm"