-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpnn.py
441 lines (397 loc) · 16.7 KB
/
pnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
"""
A network that outputs a Gaussian predictive distribution.
Author: Ian Char
"""
import math
from typing import Optional, Tuple, Dict, Any, Sequence, Callable, Union
import hydra.utils
import numpy as np
import torch
import torch.nn.functional as F
from omegaconf import DictConfig
from torchmetrics import ExplainedVariance
from dynamics_toolbox.constants import sampling_modes
from dynamics_toolbox.models.pl_models.abstract_pl_model import AbstractPlModel
class PNN(AbstractPlModel):
"""Two headed network that outputs mean and log variance of a Gaussian."""
def __init__(
self,
input_dim: int,
output_dim: int,
encoder_output_dim: int,
encoder_cfg: DictConfig,
mean_net_cfg: DictConfig,
logvar_net_cfg: DictConfig,
learning_rate: float = 1e-3,
logvar_lower_bound: Optional[float] = None,
logvar_upper_bound: Optional[float] = None,
logvar_bound_loss_coef: float = 1e-3,
sample_mode: str = sampling_modes.SAMPLE_FROM_DIST,
weight_decay: Optional[float] = 0.0,
sampling_distribution: str = 'Gaussian',
gp_length_scales: Union[float, str] = 3.0,
gp_num_bases: int = 100,
**kwargs,
):
"""
Constructor.
Args:
input_dim: The input dimension.
output_dim: The output dimension.
encoder_output_dim: The dimension of the encoder to output.
encoder_cfg: Configuration for the encoder. The object created must have
a forward method.
mean_net_cfg: Configuration for the mean. The object created must have
a forward method.
logvar_net_cfg: Configuration for the logvar. The object created must have
a forward method.
learning_rate: The learning rate for the network.
logvar_lower_bound: Lower bound on the log variance.
If none there is no bound.
logvar_upper_bound: Lower bound on the log variance.
If none there is no bound.
logvar_bound_loss_coef: Coefficient on bound loss to add to loss.
hidden_activation: Activation of the networks hidden layers.
sample_mode: The method to use for sampling.
weight_decay: The weight decay for the optimizer.
sampling_distribution: Distribution to sample from. Either Gaussian or GP.
gp_length_scales: Length scales. Either a float to apply to every
in-out dimension pair or a path to a .npy file with a ndarray
of shape (in_dim, out_dim)
gp_num_bases: Number of bases to use in the Fourier series approximation.
"""
super().__init__(input_dim, output_dim, **kwargs)
self._input_dim = input_dim
self._output_dim = output_dim
self._encoder = hydra.utils.instantiate(
encoder_cfg,
input_dim=input_dim,
output_dim=encoder_output_dim,
_recursive_=False,
)
self._mean_head = hydra.utils.instantiate(
mean_net_cfg,
input_dim=encoder_output_dim,
output_dim=output_dim,
_recursive_=False,
)
self._logvar_head = hydra.utils.instantiate(
logvar_net_cfg,
input_dim=encoder_output_dim,
output_dim=output_dim,
_recursive_=False,
)
self._learning_rate = learning_rate
self._weight_decay = weight_decay
self._recal_constants = None
self._var_pinning = (logvar_lower_bound is not None
and logvar_upper_bound is not None)
self.sampling_distribution = sampling_distribution
self._gp_num_bases = gp_num_bases
self._curr_sample = None # Only used for GPs.
self.kernel = None
self.bmp = None
if self._var_pinning:
self._min_logvar = torch.nn.Parameter(
torch.Tensor([logvar_lower_bound])
* torch.ones(1, output_dim, dtype=torch.float32, requires_grad=True))
self._max_logvar = torch.nn.Parameter(
torch.Tensor([logvar_upper_bound])
* torch.ones(1, output_dim, dtype=torch.float32, requires_grad=True))
else:
self._min_logvar = None
self._max_logvar = None
self._logvar_bound_loss_coef = logvar_bound_loss_coef
self._sample_mode = sample_mode
self._metrics = {
'EV': ExplainedVariance(),
'IndvEV': ExplainedVariance('raw_values'),
}
def reset(self) -> None:
"""Reset the dynamics model."""
self._curr_sample = None
if self.bmp is not None:
for bm in self.bmp:
bm.reset()
def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
"""Forward function for network
Args:
x: The input to the network.
Returns:
The output of the networ.
"""
encoded = self._encoder.forward(x)
mean = self._mean_head.forward(encoded)
logvar = self._logvar_head.forward(encoded)
if self._var_pinning:
logvar = self._max_logvar - F.softplus(self._max_logvar - logvar)
logvar = self._min_logvar + F.softplus(logvar - self._min_logvar)
return mean, logvar
def single_sample_output_from_torch(
self,
net_in: torch.Tensor
) -> Tuple[torch.Tensor, Dict[str, Any]]:
"""Get the output for a single sample in the model.
Args:
net_in: The input for the network.
Returns:
The predictions for next states and dictionary of info.
"""
if self.sampling_distribution == 'BMP':
raise ValueError('Cannot single sample BMP')
with torch.no_grad():
mean_predictions, logvar_predictions = self.forward(net_in)
std_predictions = self.recalibrate((0.5 * logvar_predictions).exp())
if self.sampling_distribution == 'Gaussian':
if self._sample_mode == sampling_modes.SAMPLE_FROM_DIST:
predictions = (torch.randn_like(mean_predictions) * std_predictions
+ mean_predictions)
else:
predictions = mean_predictions
elif self.sampling_distribution == 'GP':
predictions = self._make_gp_prediction(
net_in,
mean_predictions,
std_predictions,
single_sample=True,
)
elif self.sampling_distribution == 'Mean':
predictions = mean_predictions
else:
raise ValueError(f'Unknown distribuction {self.sampling_distribution}')
info = {'predictions': predictions,
'mean_predictions': mean_predictions,
'std_predictions': std_predictions}
return predictions, info
def multi_sample_output_from_torch(
self,
net_in: torch.Tensor
) -> Tuple[torch.Tensor, Dict[str, Any]]:
"""Get the output where each input is assumed to be from a different sample.
Args:
net_in: The input for the network.
Returns:
The deltas for next states and dictionary of info.
"""
if self.sampling_distribution == 'GP' or self.sampling_distribution == 'BMP':
with torch.no_grad():
mean_predictions, logvar_predictions = self.forward(net_in)
std_predictions = self.recalibrate((0.5 * logvar_predictions).exp())
if self.sampling_distribution == 'GP':
predictions = self._make_gp_prediction(
net_in,
mean_predictions,
std_predictions,
single_sample=False,
)
else:
predictions = self._make_bmp_prediction(
net_in,
mean_predictions,
std_predictions,
)
info = {'predictions': predictions,
'mean_predictions': mean_predictions,
'std_predictions': std_predictions}
return predictions, info
return self.single_sample_output_from_torch(net_in)
def recalibrate(self, std_predictions):
if self.recal_constants is not None:
std_predictions = std_predictions * self.recal_constants
return std_predictions
def get_net_out(self, batch: Sequence[torch.Tensor]) -> Dict[str, torch.Tensor]:
"""Get the output of the network and organize into dictionary.
Args:
batch: The batch passed to the network.
Returns:
Dictionary of name to tensor.
"""
xi, _ = batch[:2]
mean, logvar = self.forward(xi)
return {'mean': mean, 'logvar': logvar, 'std': (0.5 * logvar).exp()}
def loss(
self,
net_out: Dict[str, torch.Tensor],
batch: Sequence[torch.Tensor],
) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:
"""Compute the loss function.
Args:
net_out: The output of the network.
batch: The batch passed into the network.
Returns:
The loss and a dictionary of other statistics.
"""
_, labels = batch[:2]
mean = net_out['mean']
logvar = net_out['logvar']
sq_diffs = (mean - labels).pow(2)
mse = torch.mean(sq_diffs)
loss = torch.mean(torch.exp(-logvar) * sq_diffs + logvar)
stats = dict(
nll=loss.item(),
mse=mse.item(),
)
stats['logvar/mean'] = logvar.mean().item()
if self._var_pinning:
bound_loss = self._logvar_bound_loss_coef * \
torch.abs(self._max_logvar - self._min_logvar).mean()
stats['bound_loss'] = bound_loss.item()
stats['logvar_lower_bound/mean'] = self._min_logvar.mean().item()
stats['logvar_upper_bound/mean'] = self._max_logvar.mean().item()
stats['logvar_bound_difference'] = (
self._max_logvar - self._min_logvar).mean().item()
loss += bound_loss
stats['loss'] = loss.item()
return loss, stats
def configure_optimizers(self) -> torch.optim.Optimizer:
"""Configure the optimizer"""
return torch.optim.Adam(self.parameters(), lr=self._learning_rate)
def set_kernel(self, kernel):
"""Load in a kernel that was trained for GP smoothness."""
self.kernel = kernel
def to(self, device):
super().to(device)
if self._recal_constants is not None:
self._recal_constants = self._recal_constants.to(device)
if self.kernel is not None:
self.kernel = self.kernel.to(device)
if self.bmp is not None:
self.bmp = [bm.to(device) for bm in self.bmp]
return self
@property
def sample_mode(self) -> str:
"""The sample mode is the method that in which we get next state."""
return self._sample_mode
@sample_mode.setter
def sample_mode(self, mode: str) -> None:
"""Set the sample mode to the appropriate mode."""
if self._sample_mode not in [sampling_modes.SAMPLE_FROM_DIST,
sampling_modes.RETURN_MEAN]:
raise ValueError(
f'PNN sample mode must either be {sampling_modes.SAMPLE_FROM_DIST} '
f'or {sampling_modes.RETURN_MEAN}, but received {mode}.')
self._sample_mode = mode
@property
def input_dim(self) -> int:
"""The sample mode is the method that in which we get next state."""
return self._hparams.input_dim
@property
def output_dim(self) -> int:
"""The sample mode is the method that in which we get next state."""
return self._hparams.output_dim
@property
def metrics(self) -> Dict[str, Callable[[torch.Tensor], torch.Tensor]]:
"""Get the list of metric functions to compute."""
return self._metrics
@property
def learning_rate(self) -> float:
"""Get the learning rate."""
return self._learning_rate
@property
def weight_decay(self) -> float:
"""Get the weight decay."""
return self._weight_decay
@property
def recal_constants(self) -> float:
"""Get the weight decay."""
return self._recal_constants
@recal_constants.setter
def recal_constants(self, constants: np.ndarray):
if constants is None:
self._recal_constants = None
else:
if isinstance(constants, np.ndarray):
self._recal_constants = torch.as_tensor(constants).to(self.device)
else:
self._recal_constants = constants.to(self.device)
self._recal_constants = self._recal_constants.reshape(1, -1)
def _make_gp_prediction(
self,
net_in: torch.Tensor,
mean_predictions: torch.Tensor,
std_predictions: torch.Tensor,
single_sample: bool,
):
assert self.kernel is not None
if self._curr_sample is None:
if single_sample:
self._curr_sample = self._sample_prior(1)
else:
self._curr_sample = self._sample_prior(len(net_in))
if hasattr(self.kernel, 'encoder'):
encoding_in = (torch.cat([net_in, std_predictions], dim=-1)
if self.kernel.input_dim > net_in.shape[-1]
else net_in)
with torch.no_grad():
encoding = self.kernel.encoder(encoding_in)
if self.output_dim == 1:
encoding = encoding.unsqueeze(0)
prior_draws = math.sqrt(2 / self._gp_num_bases) * torch.stack([
torch.cos((self._curr_sample[0][:, :, outdim]
* encoding[[outdim]]).sum(dim=-1)
+ self._curr_sample[1][..., outdim]).sum(dim=0)
for outdim in range(self.output_dim)], dim=1)
else:
with torch.no_grad():
prior_draws = (
math.sqrt(2 / self._gp_num_bases)
* torch.cos((self._curr_sample[0]
@ net_in.reshape(1, len(net_in),
-1, 1)).squeeze(-1)
+ self._curr_sample[1]).sum(dim=0)
)
return mean_predictions + std_predictions * prior_draws
def _make_bmp_prediction(
self,
net_in: torch.Tensor,
mean_predictions: torch.Tensor,
std_predictions: torch.Tensor,
):
"""Make prediction with the beta mixture sampling procedure."""
q_preds = torch.stack([
bm.sample_next_q_no_grad(net_in.unsqueeze(1),
output_numpy=False)[0].squeeze()
for bm in self.bmp
], dim=1).to(self.device)
return (
mean_predictions
+ std_predictions * math.sqrt(2) * torch.erfinv(2 * q_preds - 1)
)
def _sample_prior(self, num_samples: int) -> Tuple[np.ndarray]:
"""Sample coefficients for Fourier prior sample. Right now this is only for
the RBF kernel but we could possibly augment this in the future.
Args:
num_samples: Number of prior function samples.
Returns: Theta cosine coefficients and offsets each with shape
(num_bases, num_samples, out_dim, in_dim)
and (num_bases, num_samples, out_dim) respectively.
"""
assert self.kernel is not None
thetas = torch.randn(
self._gp_num_bases, num_samples,
self.kernel.lengthscales.shape[-2],
self.kernel.lengthscales.shape[-1], device=self.device)
with torch.no_grad():
thetas = (thetas
/ self.kernel.lengthscales.unsqueeze(0).unsqueeze(0)
).to(self.device)
betas = torch.rand(self._gp_num_bases, num_samples,
self.kernel.lengthscales.shape[-2])
betas = (betas * 2 * np.pi).to(self.device)
return thetas, betas
def _get_test_and_validation_metrics(
self,
net_out: Dict[str, torch.Tensor],
batch: Sequence[torch.Tensor],
) -> Dict[str, torch.Tensor]:
"""Compute additional metrics to be used for validation/test only.
Args:
net_out: The output of the network.
batch: The batch passed into the network.
Returns:
A dictionary of additional metrics.
"""
return super()._get_test_and_validation_metrics(
{'prediction': net_out['mean']},
batch,
)