-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathmetal.c
325 lines (262 loc) · 9.63 KB
/
metal.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
/* ------- file: -------------------------- metal.c -----------------
Version: rh2.0
Author: Han Uitenbroek ([email protected])
Last modified: Tue Jul 7 16:01:45 2009 --
-------------------------- ----------RH-- */
/* --- Bound-free and bound-bound opacity and emissivity due to elements
in the array metals (struct Atom *). Also opacity due to hydrogen
bound-bound transitions is calculated in passive_bb.
The routines duplicateLevel(active_atom, labeli) and
duplicateLine(active_atom, labeli, labelj) are used to check
whether the level labeli, or radiative transition between labeli
and labelj, respectively, are part of the active set of
transitions. In this way we try to prevent counting opacity twice,
both in the active and the background transition.
Global variables:
atmos -- Atmos structure for atmospheric data.
atom -- Atom structure with the active atom.
Input:
lambda -- Wavelength [nm] for which opacity and emissivity
are to be calculated.
Nmetal -- Number of entries in metals array.
metals -- Pointer to array of Atom structures containing atomic
data for metals.
Additional input for passive_bb:
nspect -- Index of spectrum (needed to set atmos.backgrflags[]).
mu -- Index of ray.
to_obs -- Boolean set to TRUE is ray is followed in direction
towards observer.
Output:
chi[Nspace] -- Array for opacities [m^2].
eta[Nspace] -- Array for emissivities [J s^-1 Hz^-1 sr^-1].
-- -------------- */
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include "rh.h"
#include "atom.h"
#include "atmos.h"
#include "error.h"
#include "constant.h"
#include "background.h"
#include "inputs.h"
#define N_MAX_OVERLAP 10
/* --- Function prototypes -- -------------- */
/* --- Global variables -- -------------- */
extern Atmosphere atmos;
extern char messageStr[];
extern InputData input;
/* ------- begin -------------------------- Metal_bf.c -------------- */
bool_t Metal_bf(double lambda, int Nmetal, struct Atom *metals,
double *chi, double *eta)
{
register int m, k, kr;
bool_t hunt;
int i, j, Z;
double lambdaEdge, alpha_la, twohnu3_c2, twohc, gijk, hc_k, hc_kla,
**n, *expla = NULL, n_eff, gbf_0;
Atom *metal;
AtomicContinuum *continuum;
twohc = (2.0 * HPLANCK * CLIGHT) / CUBE(NM_TO_M);
hc_k = (HPLANCK * CLIGHT) / (KBOLTZMANN * NM_TO_M);
for (k = 0; k < atmos.Nspace; k++) {
chi[k] = 0.0;
eta[k] = 0.0;
}
/* --- Go through the bound-free transitions of the metals and add
the opacity and emissivity for each transition for which the
current wavelength falls below treshold and above the
minimum wavelength -- -------------- */
for (m = 0, metal = metals; m < Nmetal; m++, metal++) {
if (!metal->active) {
/* --- Use LTE or NonLTE population numbers ? -- -------------- */
n = (metal->n != metal->nstar) ? metal->n : metal->nstar;
for (kr = 0; kr < metal->Ncont; kr++) {
continuum = metal->continuum + kr;
i = continuum->i;
j = continuum->j;
lambdaEdge = continuum->lambda0;
if (lambda <= lambdaEdge && lambda >= continuum->lambda[0]) {
hc_kla = hc_k / lambda;
twohnu3_c2 = twohc / CUBE(lambda);
/* --- Evaluate the exponential only once at wavelength lambda,
not for each transition seperately -- ------------ */
if (expla == NULL) {
expla = (double *) malloc(atmos.Nspace * sizeof(double));
for (k = 0; k < atmos.Nspace; k++)
expla[k] = exp(-hc_kla/atmos.T[k]);
}
if (continuum->hydrogenic) {
Z = metal->stage[continuum->j];
n_eff = Z*sqrt(E_RYDBERG / (metal->E[continuum->j] -
metal->E[continuum->i]));
gbf_0 = Gaunt_bf(continuum->lambda0, n_eff, Z);
alpha_la = continuum->alpha0 * CUBE(lambda/continuum->lambda0) *
Gaunt_bf(lambda, n_eff, Z) / gbf_0;
} else {
splineCoef(continuum->Nlambda, continuum->lambda,
continuum->alpha);
splineEval(1, &lambda, &alpha_la, hunt=FALSE);
}
for (k = 0; k < atmos.Nspace; k++) {
gijk = metal->nstar[i][k]/metal->nstar[j][k] * expla[k];
chi[k] += alpha_la * (1.0 - expla[k]) * n[i][k];
eta[k] += twohnu3_c2 * gijk * alpha_la * n[j][k];
}
}
}
}
}
if (expla != NULL) {
free(expla);
return TRUE;
} else
return FALSE;
}
/* ------- end ---------------------------- Metal_bf.c -------------- */
/* ------- begin -------------------------- passive_bb.c ------------ */
flags passive_bb(double lambda, int nspect, int mu, bool_t to_obs,
double *chi, double *eta, double *chip)
{
const char routineName[] = "passive_bb";
register int k, kr, l, m, nc;
static bool_t initialize = TRUE;
static int Nlist;
static struct Linelist *linelist[N_MAX_OVERLAP];
bool_t add_to_list, linepresent;
int i, j, entry;
double dlambda, phi, v, twohnu3_c2, hc, fourPI, hc_4PI,
gij, Vij, **n;
Atom *atom;
AtomicLine *line;
flags backgrflags;
/* --- Calculate contribution of bound-bound transitions in the
background atoms (including hydrogen) to the opacity and
emissivity.
Note: A list of lines is maintained to prevent recalculation of
the damping parameter of the lines for successive wavelengths
and angles.
-- -------------- */
backgrflags.hasline = FALSE;
backgrflags.ispolarized = FALSE;
if (initialize) {
for (l = 0; l < N_MAX_OVERLAP; l++) linelist[l] = NULL;
Nlist = 0;
initialize = FALSE;
}
hc = HPLANCK * CLIGHT;
fourPI = 4.0 * PI;
hc_4PI = hc / fourPI;
for (k = 0; k < atmos.Nspace; k++) {
chi[k] = 0.0;
eta[k] = 0.0;
}
if (atmos.Stokes) {
for (k = atmos.Nspace; k < 4*atmos.Nspace; k++) {
chi[k] = 0.0;
eta[k] = 0.0;
}
if (input.magneto_optical)
for (k = 0; k < 3*atmos.Nspace; k++) chip[k] = 0.0;
}
/* --- Reset the used tags in the linelist -- -------------- */
for (l = 0; l < Nlist; l++) linelist[l]->used = FALSE;
/* --- Go through the bound-bound transitions, First hydrogen, then
the metals, and add the opacity and emissivity for each
transition for which the current wavelength falls within the
limits of the line. -- -------------- */
for (m = 0; m < atmos.Natom; m++) {
atom = atmos.atoms + m;
if (!atom->active) {
/* --- Use LTE or NonLTE population numbers ? -- -------------- */
n = (atom->n != atom->nstar) ? atom->n : atom->nstar;
for (kr = 0; kr < atom->Nline; kr++) {
line = atom->line + kr;
i = line->i;
j = line->j;
dlambda = line->lambda0 *
line->qwing * (atmos.vmicro_char / CLIGHT);
if (fabs(lambda - line->lambda0) <= dlambda) {
backgrflags.hasline = TRUE;
atmos.backgrflags[nspect].hasline = TRUE;
/* --- Add line to list if not yet present -- ----------- */
add_to_list = TRUE;
for (l = 0; l < Nlist; l++) {
if (line == linelist[l]->line) {
add_to_list = FALSE;
entry = l;
break;
}
}
if (add_to_list) {
if (Nlist == N_MAX_OVERLAP) {
sprintf(messageStr, "Too many overlapping transitions");
Error(ERROR_LEVEL_2, routineName, messageStr);
}
/* --- Create a new entry in the list -- -------------- */
linelist[Nlist] =
(struct Linelist *) malloc(sizeof(struct Linelist));
entry = Nlist++;
linelist[entry]->line = line;
/* --- Calculate and store the line's damping parameter */
if (line->Voigt) {
linelist[entry]->adamp =
(double *) malloc(atmos.Nspace * sizeof(double));
Damping(line, linelist[entry]->adamp);
} else
linelist[entry]->adamp = NULL;
}
linelist[entry]->used = TRUE;
gij = line->Bji / line->Bij;
twohnu3_c2 = line->Aji / line->Bji;
/* --- Evaluate absorption and emission coefficients -- - */
for (nc = 0; nc < line->Ncomponent; nc++) {
for (k = 0; k < atmos.Nspace; k++) {
v = (lambda - line->lambda0 - line->c_shift[nc]) *
CLIGHT / (line->lambda0 * atom->vbroad[k]);
if (atmos.moving) {
if (to_obs)
v += vproject(k, mu) / atom->vbroad[k];
else
v -= vproject(k, mu) / atom->vbroad[k];
}
if (line->Voigt)
phi = Voigt(linelist[entry]->adamp[k], v, NULL,
ARMSTRONG) * line->c_fraction[nc];
else
phi = exp(-SQ(v));
Vij = hc_4PI * line->Bij * phi / (SQRTPI*atom->vbroad[k]);
chi[k] += Vij * (n[i][k] - gij * n[j][k]);
eta[k] += twohnu3_c2 * gij * Vij * n[j][k];
}
}
}
}
}
}
/* --- Remove lines from the line list that have not been used at this
wavelength, and sort list -- -------------- */
for (l = 0; l < Nlist; l++) {
if (!linelist[l]->used) {
if (linelist[l]->adamp) free(linelist[l]->adamp);
free(linelist[l]);
linelist[l] = NULL;
}
}
for (l = 0; l < N_MAX_OVERLAP; l++) {
if (linelist[l] == NULL) {
for (m = l+1; m < N_MAX_OVERLAP; m++) {
if (linelist[m] != NULL) {
linelist[l] = linelist[m];
linelist[m] = NULL;
break;
}
}
}
}
/* --- Count number of entries in the list -- -------------- */
Nlist = 0;
for (l = 0; l < N_MAX_OVERLAP; l++) if (linelist[l]) Nlist++;
return backgrflags;
}
/* ------- end ---------------------------- passive_bb.c ------------ */