-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathpointconv_util_kitti.py
763 lines (597 loc) · 32 KB
/
pointconv_util_kitti.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
# -*-coding:utf-8-*-
import torch
import torch.nn as nn
import torch.nn.functional as F
from pointnet2 import pointnet2_utils
LEAKY_RATE = 0.1
use_bn = False
class Conv1d(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, padding=0, use_leaky=True, bn=use_bn):
super(Conv1d, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
relu = nn.ReLU(inplace=True) if not use_leaky else nn.LeakyReLU(LEAKY_RATE, inplace=True)
self.composed_module = nn.Sequential(
nn.Conv1d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding, bias=True),
nn.BatchNorm1d(out_channels) if bn else nn.Identity(),
relu
)
def forward(self, x):
x = x.permute(0,2,1)
x = self.composed_module(x)
x = x.permute(0, 2, 1)
return x
class Conv2d(nn.Module):
def __init__(self,in_channels,out_channels,kernel_size,stride=[1,1],bn=False,activation_fn = True):
super(Conv2d,self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.stride = stride
self.bn = bn
self.activation_fn = activation_fn
self.conv = nn.Conv2d(in_channels,out_channels,kernel_size,stride)
if bn:
self.bn_linear = nn.BatchNorm2d(out_channels)
if activation_fn:
self.relu = nn.ReLU(inplace=True)
def forward(self,x):
# x (b,n,s,c)
x = x.permute(0,3,2,1) #(b,c,s,n)
outputs = self.conv(x)
if self.bn:
outputs = self.bn_linear(outputs)
if self.activation_fn:
outputs = self.relu(outputs)
outputs = outputs.permute(0,3,2,1) # (b,n,s,c)
return outputs
def square_distance(src, dst):
"""
Calculate Euclid distance between each two points.
src^T * dst = xn * xm + yn * ym + zn * zm? sum(src^2, dim=-1) = xn*xn + yn*yn + zn*zn;
sum(dst^2, dim=-1) = xm*xm + ym*ym + zm*zm;
dist = (xn - xm)^2 + (yn - ym)^2 + (zn - zm)^2
= sum(src**2,dim=-1)+sum(dst**2,dim=-1)-2*src^T*dst
Input:
src: source points, [B, N, C]
dst: target points, [B, M, C]
Output:
dist: per-point square distance, [B, N, M]
"""
B, N, _ = src.shape
_, M, _ = dst.shape
dist = -2 * torch.matmul(src, dst.permute(0, 2, 1))
dist += torch.sum(src ** 2, -1).view(B, N, 1)
dist += torch.sum(dst ** 2, -1).view(B, 1, M)
return dist
def knn_point(nsample, xyz, new_xyz):
"""
Input:
nsample: max sample number in local region
xyz: all points, [B, N, C]
new_xyz: query points, [B, S, C]
Return:
group_idx: grouped points index, [B, S, nsample]
"""
sqrdists = square_distance(new_xyz, xyz)
_, group_idx = torch.topk(sqrdists, nsample, dim = -1, largest=False, sorted=False)
return group_idx
def index_points_gather(points, fps_idx):
"""
Input:
points: input points data, [B, N, C]
idx: sample index data, [B, S]
Return:
new_points:, indexed points data, [B, S, C]
"""
points_flipped = points.permute(0, 2, 1).contiguous()
new_points = pointnet2_utils.gather_operation(points_flipped, fps_idx)
return new_points.permute(0, 2, 1).contiguous()
def index_points_group(points, knn_idx):
"""
Input:
points: input points data, [B, N, C]
knn_idx: sample index data, [B, N, K]
Return:
new_points:, indexed points data, [B, N, K, C]
"""
points_flipped = points.permute(0, 2, 1).contiguous()
new_points = pointnet2_utils.grouping_operation(points_flipped, knn_idx.int()).permute(0, 2, 3, 1)
return new_points
def group(nsample, xyz, points):
"""
Input:
nsample: scalar
xyz: input points position data, [B, N, C]
points: input points data, [B, N, D]
Return:
new_xyz: sampled points position data, [B, 1, C]
new_points: sampled points data, [B, 1, N, C+D]
"""
B, N, C = xyz.shape
S = N
new_xyz = xyz
idx = knn_point(nsample, xyz, new_xyz)
grouped_xyz = index_points_group(xyz, idx) # [B, npoint, nsample, C]
grouped_xyz_norm = grouped_xyz - new_xyz.view(B, S, 1, C)
if points is not None:
grouped_points = index_points_group(points, idx)
new_points = torch.cat([grouped_xyz_norm, grouped_points], dim=-1) # [B, npoint, nsample, C+D]
else:
new_points = grouped_xyz_norm
return new_points, grouped_xyz_norm
def grouping(feature, K, src_xyz, q_xyz, use_xyz=False):
'''
Input:
feature: (batch_size, ndataset, c)
K: neighbor size
src_xyz: original point xyz (batch_size, ndataset, 3)
q_xyz: query point xyz (batch_size, npoint, 3)
Return:
grouped_xyz: (batch_size, npoint, K,3)
xyz_diff: (batch_size, npoint,K, 3)
new_points: (batch_size, npoint,K, c+3) if use_xyz else (batch_size, npoint,K, c)
point_indices: (batch_size, npoint, K)
'''
q_xyz = q_xyz.contiguous()
src_xyz = src_xyz.contiguous()
point_indices = knn_point(K,src_xyz,q_xyz) # (batch_size, npoint, K)
grouped_xyz = index_points_group(src_xyz,point_indices) # (batch_size, npoint, K,3)
xyz_diff = grouped_xyz - (q_xyz.unsqueeze(2)).repeat(1, 1, K, 1) # (batch_size, npoint,K, 3)
grouped_feature = index_points_group(feature, point_indices) #(batch_size, npoint, K,c)
if use_xyz:
new_points = torch.cat([xyz_diff, grouped_feature], dim=-1) # (batch_size, npoint,K, c+3)
else:
new_points = grouped_feature #(batch_size, npoint, K,c)
return grouped_xyz, xyz_diff, new_points, point_indices
def group_query(nsample, s_xyz, xyz, s_points):
"""
Input:
nsample: scalar
s_xyz: input points position data, [B, N, C]
s_points: input points data, [B, N, D]
xyz: input points position data, [B, S, C]
Return:
new_xyz: sampled points position data, [B, 1, C]
new_points: sampled points data, [B, 1, N, C+D]
"""
B, N, C = s_xyz.shape
S = xyz.shape[1]
new_xyz = xyz
idx = knn_point(nsample, s_xyz, new_xyz) #[B,S,nsample,C]
grouped_xyz = index_points_group(s_xyz, idx) # [B, S, nsample, C]
grouped_xyz_norm = grouped_xyz - new_xyz.view(B, S, 1, C) # [B, S, nsample, C]
if s_points is not None:
grouped_points = index_points_group(s_points, idx) # [B, S, nsample, D]
new_points = torch.cat([grouped_xyz_norm, grouped_points], dim=-1) # [B, S, nsample, C+D]
else:
new_points = grouped_xyz_norm
return new_points, grouped_xyz_norm
def sample_and_group( npoint, radius, nsample, xyz, xyz_raw, label, points, knn=True, use_xyz=True, use_fps=True):
'''
Input:
npoint: int32
radius: float32
nsample: int32
xyz: (batch_size, ndataset, 3) TF tensor channel——是否涉及local point features
label: (batch_size, ndataset, 3) TF tensor
points: (batch_size, ndataset, channel) TF tensor, if None will just use xyz as points
knn: bool, if True use kNN instead of radius search
use_xyz: bool, if True concat XYZ with local point features, otherwise just use point features
Output:
new_xyz: (batch_size, npoint, 3) TF tensor
new_label: (batch_size, npoint, 3) TF tensor
new_points: (batch_size, npoint, nsample, 3+channel) TF tensor
'''
xyz = xyz.contiguous()
if npoint == 4096 and not use_fps:
new_xyz = torch.split(xyz, 4096, 1)[0] # (batch_size, 2048, 3)
new_xyz_raw = torch.split(xyz_raw, 4096, 1)[0] # (batch_size, 2048, 3)
new_label = torch.split(label, 4096, 1)[0] # (batch_size, 2048, 3)
else:
sample_idx = pointnet2_utils.furthest_point_sample(xyz, npoint) # (batch_size,npoint)
new_xyz = index_points_gather(xyz, sample_idx) # (batch_size, npoint, 3)
new_label = index_points_gather(label, sample_idx) # (batch_size, npoint, 3)
if points is None:
grouped_xyz, xyz_diff, grouped_points, idx = grouping(xyz, nsample, xyz, new_xyz) #(b, n,nsample,3) (b, n,nsample. 3) (b, n, nsample, 3) (b,n,nsample)
new_points = torch.cat([xyz_diff, grouped_points], dim=-1) #(b, n,nsample,3+3)
else:
grouped_xyz, xyz_diff, grouped_points, idx = grouping(points, nsample, xyz, new_xyz) #(b, n,nsample,3) (b, n,nsample. 3) (b, n, nsample, c) (b,n,nsample)
new_points = torch.cat([xyz_diff, grouped_points], dim=-1) # (batch_size, npoint, nample, 3+c)
if xyz_raw is not None:
return new_xyz, new_label, new_points, new_xyz_raw
else:
return new_xyz, new_label, new_points,sample_idx #(batch_size, npoint, 3) (batch_size, npoint, 3) (batch_size, npoint, nample, 3+c)
class PointNetSaModule(nn.Module):
def __init__(self, npoint, radius, nsample, in_channels,mlp, mlp2, group_all, is_training, bn_decay, bn=True, pooling='max', knn=False, use_xyz=True,use_fps=True):
super(PointNetSaModule, self).__init__()
self.npoint = npoint
self.radius = radius
self.nsample = nsample
self.in_channels = in_channels + 3
self.mlp = mlp
self.mlp2 = mlp2
self.group_all = group_all
self.is_training = is_training
self.bn_decay = bn_decay
self.bn = bn
self.pooling = pooling
self.knn = knn
self.use_xyz = use_xyz
self.num_mlp_layers = len(mlp)
self.mlp_convs = nn.ModuleList()
self.mlp2_convs = nn.ModuleList()
self.use_fps = use_fps
for i,num_out_channel in enumerate(mlp):
self.mlp_convs.append(Conv2d(self.in_channels,num_out_channel,[1,1],stride=[1,1],bn=bn))
self.in_channels = num_out_channel
#if pooling == 'max_and_avg':
#self.in_channels = 2 * mlp[-1]
if mlp2 is not None:
for i, num_out_channel in enumerate(mlp2):
self.mlp2_convs.append(Conv2d(self.in_channels,num_out_channel,[1,1],stride=[1,1],bn=bn))
self.in_channels = num_out_channel
def forward(self, xyz, xyz_raw, label, points ):
"""
PointNetSaModule
Input:
xyz: input points position data, [B, N,3]
xyz_raw: [B, N,3]
label: [B, N,3]
points: input points data, [B, N,C]
Return:
new_xyz: sampled points position data, [B, npoint, 3]
new_label: [B, npoint, 3]
new_points: (batch_size, npoint, mlp2[-1]) if mlp2 is not None else (batch_size, npoint, mlp[-1])
"""
if xyz_raw is not None:
# [B,npoint,3] [B,npoint,3] [B,npoint,nsample,3+C] [B,npoint,3]
new_xyz, new_label, new_points, new_xyz_raw = sample_and_group(self.npoint, self.radius,self.nsample, xyz, xyz_raw, label, points, self.knn, self.use_xyz, self.use_fps)
else:
new_xyz, new_label, new_points,sample_idx = sample_and_group(self.npoint, self.radius,self.nsample, xyz, xyz_raw, label, points, self.knn, self.use_xyz,self.use_fps)
# new_points: (batch_size, npoint, nample, 3+channel)
for i,conv in enumerate(self.mlp_convs):
new_points = conv(new_points)
# (batch_size, npoint, nample, mlp[-1])
if self.pooling == 'max':
new_points = torch.max(new_points,dim=2,keepdim=True)[0] # (batch_size, npoint, 1, mlp[-1])
elif self.pooling == 'avg':
new_points = torch.mean(new_points,dim=2,keepdim=True) # (batch_size, npoint, 1, mlp[-1])
#elif self.pooling == 'max_and_avg':
#max_points = torch.max(new_points,dim=2,keepdim=True)[0]
#avg_points = torch.mean(new_points,dim=2,keepdim=True)
#new_points = torch.cat([avg_points,max_points],dim=-1)
if self.mlp2 is not None:
for i,conv in enumerate(self.mlp2_convs):
new_points = conv(new_points)
new_points = new_points.squeeze(2) # (batch_size,npoint, mlp2[-1]) if mlp2 is not None else (batch_size,npoint, mlp[-1])
if xyz_raw is not None:
return new_xyz, new_label, new_points ,new_xyz_raw
else:
return new_xyz, new_label, new_points,sample_idx
class CostVolume(nn.Module):
def __init__(self,radius, nsample, nsample_q,in_channels,mlp1, mlp2, is_training, bn_decay,bn=True, pooling='max', knn=True, corr_func='elementwise_product'):
super(CostVolume, self).__init__()
self.radius = radius
self.nsample = nsample
self.nsample_q = nsample_q
self.in_channels = 2 * in_channels + 10
self.mlp1 = mlp1
self.mlp2 = mlp2
self.is_training = is_training
self.bn_decay = bn_decay
self.bn = bn
self.pooling = pooling
self.knn = knn
self.corr_func = corr_func
self.mlp1_convs = nn.ModuleList()
self.mlp2_convs = nn.ModuleList()
self.mlp2_convs_new = nn.ModuleList()
for i, num_out_channel in enumerate(mlp1):
self.mlp1_convs.append(Conv2d(self.in_channels,num_out_channel,[1,1],stride=[1,1],bn=True))
self.in_channels = num_out_channel
self.pi_encoding = Conv2d(10,mlp1[-1],[1,1],stride=[1,1],bn=True)
self.in_channels = 2*mlp1[-1]
for j, num_out_channel in enumerate(mlp2):
self.mlp2_convs.append(Conv2d(self.in_channels,num_out_channel,[1,1],stride=[1,1],bn=True))
self.in_channels = num_out_channel
self.pc_encoding = Conv2d(10,mlp1[-1], [1,1],stride=[1,1],bn=True)
self.in_channels = 2 * mlp1[-1] + in_channels
for j,num_out_channel in enumerate(mlp2):
self.mlp2_convs_new.append(Conv2d(self.in_channels,num_out_channel,[1,1],stride=[1,1],bn=True))
self.in_channels = num_out_channel
def forward(self,warped_xyz, warped_points, f2_xyz, f2_points):
'''
Input:
warped_xyz: (b,npoint,3)
warped_points: (b,npoint,c)
f2_xyz: (b,ndataset,3)
f2_points: (b,ndataset,c)
Output:
pc_feat1_new: batch_size, npoints, mlp2[-1]
'''
qi_xyz_grouped, _, qi_points_grouped, idx = grouping(f2_points, self.nsample_q, f2_xyz, warped_xyz)#(b,npoint,nsample_q,3) (b,npoint,nsample_q,3) (b,npoint,nsample_q,c)
pi_xyz_expanded = (torch.unsqueeze(warped_xyz, 2)).repeat([1, 1, self.nsample_q, 1]) # batch_size, npoints, nsample_q, 3
pi_points_expanded = (torch.unsqueeze(warped_points, 2)).repeat([1, 1, self.nsample_q, 1]) # batch_size, npoints, nsample, c
pi_xyz_diff = qi_xyz_grouped - pi_xyz_expanded # batch_size, npoints, nsample_q, 3
pi_euc_diff = torch.sqrt(torch.sum(torch.mul(pi_xyz_diff,pi_xyz_diff), dim=-1,keepdim=True) + 1e-20) # batch_size, npoints, nsample_q, 1
pi_xyz_diff_concat = torch.cat([pi_xyz_expanded, qi_xyz_grouped, pi_xyz_diff, pi_euc_diff], dim=3) # batch_size, npoints, nsample_q,10
pi_feat_diff = torch.cat([pi_points_expanded, qi_points_grouped],dim=-1) # batch_size, npoints, nsample, 2c
pi_feat1_new = torch.cat([pi_xyz_diff_concat, pi_feat_diff], dim=3) # batch_size, npoint, nsample, 10+2c
for i,conv in enumerate(self.mlp1_convs):
pi_feat1_new = conv(pi_feat1_new) # batch_size, npoint, nsample, mlp1[-1]
pi_xyz_encoding = self.pi_encoding(pi_xyz_diff_concat) # batch_size, npoints, nsample_q,mlp1[-1]
pi_concat = torch.cat([pi_xyz_encoding, pi_feat1_new], dim=3) # batch_size, npoints, nsample_q,2*mlp1[-1]
for j,conv in enumerate(self.mlp2_convs):
pi_concat = conv(pi_concat) # batch_size, npoints, nsample_q,mlp2[-1]
WQ = F.softmax(pi_concat,dim=2)
pi_feat1_new = WQ * pi_feat1_new #mlp1[-1]=mlp2[-1]
pi_feat1_new = torch.sum(pi_feat1_new, dim=2, keepdim=False) # batch_size, npoint,mlp1[-1]
pc_xyz_grouped, _, pc_points_grouped, idx = grouping(pi_feat1_new, self.nsample, warped_xyz, warped_xyz) #(b,npoint,nsample,3) (b,npoint,nsample,3) (b,npoint,nsample,mlp1[-1])
pc_xyz_new = (torch.unsqueeze(warped_xyz, dim=2)).repeat([1, 1, self.nsample, 1]) # batch_size, npoints, nsample, 3
pc_points_new = (torch.unsqueeze(warped_points, dim=2)).repeat( [1, 1, self.nsample, 1]) # batch_size, npoints, nsample, c
pc_xyz_diff = pc_xyz_grouped - pc_xyz_new # batch_size, npoints, nsample, 3
pc_euc_diff = torch.sqrt(torch.sum(torch.mul(pc_xyz_diff,pc_xyz_diff), dim=3, keepdim=True) + 1e-20) # batch_size, npoints, nsample, 1
pc_xyz_diff_concat = torch.cat([pc_xyz_new, pc_xyz_grouped, pc_xyz_diff, pc_euc_diff], dim=3) # batch_size, npoints, nsample, 10
pc_xyz_encoding = self.pc_encoding(pc_xyz_diff_concat) # batch_size, npoints, nsample, mlp1[-1]
pc_concat = torch.cat([pc_xyz_encoding, pc_points_new, pc_points_grouped], dim=-1) # batch_size, npoints, nsample, mlp[-1]+3+mlp[-1]
for j,conv in enumerate(self.mlp2_convs_new):
pc_concat = conv(pc_concat) # batch_size, npoints, nsample, mlp2[-1]
WP = F.softmax(pc_concat,dim=2)
pc_feat1_new = WP * pc_points_grouped # batch_size, npoints, nsample, mlp2[-1]
pc_feat1_new = torch.sum(pc_feat1_new,dim=2, keepdim=False) # batch_size, npoints, mlp2[-1]
return pc_feat1_new
class All2AllCostVolume(nn.Module):
def __init__(self,radius, nsample, nsample_q,in_channels,mlp1, mlp2, is_training, bn_decay,bn=True, pooling='max', knn=True, corr_func='elementwise_product'):
super(All2AllCostVolume, self).__init__()
self.radius = radius
self.nsample = nsample
self.nsample_q = nsample_q
self.in_channels = 3*in_channels + 10
self.mlp1 = mlp1
self.mlp2 = mlp2
self.is_training = is_training
self.bn_decay = bn_decay
self.bn = bn
self.pooling = pooling
self.knn = knn
self.corr_func = corr_func
self.mlp1_convs = nn.ModuleList()
self.mlp2_convs = nn.ModuleList()
self.mlp2_convs_new = nn.ModuleList()
for i, num_out_channel in enumerate(mlp1):
self.mlp1_convs.append(Conv2d(self.in_channels,num_out_channel,[1,1],stride=[1,1],bn=True))
self.in_channels = num_out_channel
self.pi_encoding = Conv2d(10,mlp1[-1],[1,1],stride=[1,1],bn=True)
self.in_channels = 2*mlp1[-1]
for j, num_out_channel in enumerate(mlp2):
self.mlp2_convs.append(Conv2d(self.in_channels,num_out_channel,[1,1],stride=[1,1],bn=True))
self.in_channels = num_out_channel
self.pc_encoding = Conv2d(10,mlp1[-1], [1,1],stride=[1,1],bn=True)
self.in_channels = 2 * mlp1[-1] + in_channels
for j,num_out_channel in enumerate(mlp2):
self.mlp2_convs_new.append(Conv2d(self.in_channels,num_out_channel,[1,1],stride=[1,1],bn=True))
self.in_channels = num_out_channel
self.pi_reverse_encoding = Conv2d(in_channels,in_channels, [1,1],stride=[1,1],bn=True)
def forward(self,warped_xyz, warped_points, f2_xyz, f2_points):
'''
Input:
warped_xyz: (b,npoint,3)
warped_points: (b,npoint,c)
f2_xyz: (b,ndataset,3)
f2_points: (b,ndataset,c)
Output:
pc_feat1_new: batch_size, npoints, mlp2[-1]
'''
_,npoints,_ = warped_xyz.shape
qi_xyz_grouped, _, qi_points_grouped, idx = grouping(f2_points, self.nsample_q, f2_xyz, warped_xyz)#(b,npoint,nsample_q,3) (b,npoint,nsample_q,3) (b,npoint,nsample_q,c)
pi_xyz_expanded = (torch.unsqueeze(warped_xyz, 2)).repeat([1, 1, self.nsample_q, 1]) # batch_size, npoints, nsample_q, 3
pi_points_expanded = (torch.unsqueeze(warped_points, 2)).repeat([1, 1, self.nsample_q, 1]) # batch_size, npoints, nsample, c
pi_xyz_diff = qi_xyz_grouped - pi_xyz_expanded # batch_size, npoints, nsample_q, 3
pi_euc_diff = torch.sqrt(torch.sum(torch.mul(pi_xyz_diff,pi_xyz_diff), dim=-1,keepdim=True) + 1e-20) # batch_size, npoints, nsample_q, 1
pi_xyz_diff_concat = torch.cat([pi_xyz_expanded, qi_xyz_grouped, pi_xyz_diff, pi_euc_diff], dim=3) # batch_size, npoints, nsample_q,10
pi_points_expanded = (pi_points_expanded - torch.mean(pi_points_expanded, -1,keepdim=True)) / torch.std(pi_points_expanded, -1,keepdim=True)
qi_points_grouped = (qi_points_grouped - torch.mean(qi_points_grouped, -1,keepdim=True)) / torch.std(qi_points_grouped, -1,keepdim=True)
pi_feat_diff = torch.cat([pi_points_expanded, qi_points_grouped],dim=-1) # batch_size, npoints, nsample, 2c
pi_feat_diff_0 = pi_points_expanded * qi_points_grouped # batch_size, npoints, nsample, c
pi_feat_diff_1 = torch.max(pi_feat_diff_0,dim=1,keepdim=True)[0].repeat([1,npoints,1,1]) # batch_size, npoints, nsample, c
pi_feat_diff_1 = self.pi_reverse_encoding(pi_feat_diff_1) # batch_size, npoints, nsample, c
pi_feat_diff_2 = torch.cat([pi_feat_diff,pi_feat_diff_1],dim=-1) # batch_size, npoints, nsample, 3c
pi_feat1_new = torch.cat([pi_xyz_diff_concat, pi_feat_diff_2], dim=3) # batch_size, npoint, nsample, 10+3c
for i,conv in enumerate(self.mlp1_convs):
pi_feat1_new = conv(pi_feat1_new) # batch_size, npoint, nsample, mlp1[-1]
pi_xyz_encoding = self.pi_encoding(pi_xyz_diff_concat) # batch_size, npoints, nsample_q,mlp1[-1]
pi_concat = torch.cat([pi_xyz_encoding, pi_feat1_new], dim=3) # batch_size, npoints, nsample_q,2*mlp1[-1]
for j,conv in enumerate(self.mlp2_convs):
pi_concat = conv(pi_concat) # batch_size, npoints, nsample_q,mlp2[-1]
WQ = F.softmax(pi_concat,dim=2)
pi_feat1_new = WQ * pi_feat1_new #mlp1[-1]=mlp2[-1]
pi_feat1_new = torch.sum(pi_feat1_new, dim=2, keepdim=False) # batch_size, npoint,mlp1[-1]
pc_xyz_grouped, _, pc_points_grouped, idx = grouping(pi_feat1_new, self.nsample, warped_xyz, warped_xyz) #(b,npoint,nsample,3) (b,npoint,nsample,3) (b,npoint,nsample,mlp1[-1])
pc_xyz_new = (torch.unsqueeze(warped_xyz, dim=2)).repeat([1, 1, self.nsample, 1]) # batch_size, npoints, nsample, 3
pc_points_new = (torch.unsqueeze(warped_points, dim=2)).repeat( [1, 1, self.nsample, 1]) # batch_size, npoints, nsample, c
pc_xyz_diff = pc_xyz_grouped - pc_xyz_new # batch_size, npoints, nsample, 3
pc_euc_diff = torch.sqrt(torch.sum(torch.mul(pc_xyz_diff,pc_xyz_diff), dim=3, keepdim=True) + 1e-20) # batch_size, npoints, nsample, 1
pc_xyz_diff_concat = torch.cat([pc_xyz_new, pc_xyz_grouped, pc_xyz_diff, pc_euc_diff], dim=3) # batch_size, npoints, nsample, 10
pc_xyz_encoding = self.pc_encoding(pc_xyz_diff_concat) # batch_size, npoints, nsample, mlp1[-1]
pc_concat = torch.cat([pc_xyz_encoding, pc_points_new, pc_points_grouped], dim=-1) # batch_size, npoints, nsample, mlp[-1]+3+mlp[-1]
for j,conv in enumerate(self.mlp2_convs_new):
pc_concat = conv(pc_concat) # batch_size, npoints, nsample, mlp2[-1]
WP = F.softmax(pc_concat,dim=2)
pc_feat1_new = WP * pc_points_grouped # batch_size, npoints, nsample, mlp2[-1]
pc_feat1_new = torch.sum(pc_feat1_new,dim=2, keepdim=False) # batch_size, npoints, mlp2[-1]
return pc_feat1_new
class SetUpconvModule(nn.Module):
def __init__( self,nsample, in_channels,mlp, mlp2, is_training, bn_decay=None, bn=True, pooling='max', radius=None, knn=True):
super(SetUpconvModule, self).__init__()
self.nsample = nsample
self.last_channel = in_channels[-1] + 3
self.mlp = mlp
self.mlp2 = mlp2
self.is_training = is_training
self.bn_decay = bn_decay
self.bn = bn
self.pooling = pooling
self.radius = radius
self.knn = knn
self.mlp_conv = nn.ModuleList()
self.mlp2_conv = nn.ModuleList()
if mlp is not None:
for i,num_out_channel in enumerate(mlp):
self.mlp_conv.append(Conv2d(self.last_channel,num_out_channel,[1,1],stride=[1,1],bn=True))
self.last_channel = num_out_channel
if len(mlp) is not 0:
self.last_channel = mlp[-1] + in_channels[0]
else:
self.last_channel = self.last_channel + in_channels[0]
if mlp2 is not None:
for i,num_out_channel in enumerate(mlp2):
self.mlp2_conv.append(Conv2d(self.last_channel,num_out_channel,[1,1],stride=[1,1],bn=True))
self.last_channel = num_out_channel
def forward(self, xyz1, xyz2, feat1, feat2):
'''
Input:
xyz1: (batch_size, npoint1,3)
xyz2: (batch_size, npoint2,3)
feat1: (batch_size, npoint1,c1) features for xyz1 points (earlier layers, more points)
feat2: (batch_size, npoint2, c2) features for xyz2 points
Return:
(batch_size, npoint1, mlp[-1] or mlp2[-1] or channel1+3)
'''
xyz2_grouped, _, feat2_grouped, idx = grouping(feat2, self.nsample, xyz2, xyz1) #(batch_size,npoint1,nsample,3) _ (batch_size,npoint1,nsample,c2)
xyz1_expanded = torch.unsqueeze(xyz1, 2) # batch_size, npoint1, 1, 3
xyz_diff = xyz2_grouped - xyz1_expanded # batch_size, npoint1, nsample, 3
net = torch.cat([feat2_grouped, xyz_diff], dim=3) # batch_size, npoint1, nsample, channel2+3
if self.mlp is not None:
for i,conv in enumerate(self.mlp_conv):
net = conv(net)
if self.pooling == 'max':
feat1_new = torch.max(net, dim=2, keepdim=False)[0] # batch_size, npoint1, mlp[-1]
elif self.pooling == 'avg':
feat1_new = torch.mean(net, dim=2, keepdim=False) # batch_size, npoint1, mlp[-1]
if feat1 is not None:
feat1_new = torch.cat([feat1_new, feat1], dim=2) # batch_size, npoint1, mlp[-1]+channel1
feat1_new = torch.unsqueeze(feat1_new, 2) # batch_size, npoint1, 1, mlp[-1]
if self.mlp2 is not None:
for i,conv in enumerate(self.mlp2_conv):
feat1_new = conv(feat1_new)
feat1_new = torch.squeeze(feat1_new, 2) # batch_size, npoint1, mlp2[-1]
return feat1_new
class PointnetFpModule(nn.Module):
def __init__(self, in_channels,mlp, is_training, bn_decay, bn=True, last_mlp_activation=True):
super(PointnetFpModule, self).__init__()
self.in_channels = in_channels
self.mlp = mlp
self.is_training = is_training
self.bn_decay = bn_decay
self.last_mlp_activation= last_mlp_activation
self.mlp_conv = nn.ModuleList()
for i, num_out_channel in enumerate(mlp):
if i == len(mlp)-1 and not(last_mlp_activation):
activation_fn = False
else:
activation_fn = True
self.mlp_conv.append(Conv2d(self.in_channels,num_out_channel,[1,1],stride=[1,1],bn=bn,activation_fn=activation_fn))
self.in_channels = num_out_channel
def forward(self, xyz1, xyz2, points1, points2):
"""
Input:
xyz1: (batch_size, ndataset1, 3) TF tensor
xyz2: (batch_size, ndataset2, 3) TF tensor, sparser than xyz1
points1: (batch_size, ndataset1, nchannel1) TF tensor
points2: (batch_size, ndataset2, nchannel2) TF tensor
mlp: list of int32 -- output size for MLP on each point
Return:
new_points: (batch_size, ndataset1, mlp[-1]) TF tensor
"""
xyz1 = xyz1.contiguous()
xyz2 = xyz2.contiguous()
dist, idx = pointnet2_utils.three_nn(xyz1, xyz2) #(b,n1,3)
dist[dist < 1e-10] = 1e-10
norm = torch.sum((1.0 / dist), dim=2, keepdim=True)
norm = norm.repeat(1,1,3)
weight = (1.0 / dist) / norm
points2 = points2.permute(0,2,1)
interpolated_points = pointnet2_utils.three_interpolate(points2, idx, weight)
interpolated_points = interpolated_points.permute(0,2,1) #(b,n1,c2)
new_points1 = interpolated_points
if points1 is not None:
new_points1 = torch.cat([interpolated_points, points1],dim=2) # B,ndataset1,nchannel1+nchannel2
else:
new_points1 = interpolated_points # B,ndataset1,nchannel2
new_points1 = torch.unsqueeze(new_points1, 2)
for i,conv in enumerate(self.mlp_conv):
new_points1 = conv(new_points1)
new_points1 = torch.squeeze(new_points1, 2) # B,ndataset1,mlp[-1]
return new_points1
class WarpingLayers(nn.Module):
def forward(self,xyz1,upsampled_flow):
return xyz1 + upsampled_flow
class FlowPredictor(nn.Module):
def __init__(self,in_channels,mlp, is_training, bn_decay,npoint,bn=True):
super(FlowPredictor, self).__init__()
self.in_channels = in_channels[0] + in_channels[1] + in_channels[2]+in_channels[3]+16
self.mlp = mlp
self.is_training = is_training
self.bn_decay = bn_decay
self.bn = bn
self.mlp_conv = nn.ModuleList()
self.sa1 = PointNetSaModule(npoint=npoint, radius=0.5, nsample=16, in_channels=3,mlp=[32,32,32],mlp2=None, group_all=False, is_training=is_training, bn_decay=bn_decay)
self.sa2 = PointNetSaModule(npoint=npoint, radius=0.5, nsample=8, in_channels=32,mlp=[16,16,16],mlp2=None, group_all=False, is_training=is_training, bn_decay=bn_decay)
for i, num_out_channel in enumerate(mlp):
self.mlp_conv.append(Conv2d(self.in_channels, num_out_channel, [1, 1], stride=[1, 1], bn=bn))
self.in_channels = num_out_channel
def forward(self,points_f1, upsampled_feat, cost_volume,flow, pc):
'''
Input:
points_f1: (b,n,c1)
upsampled_feat: (b,n,c2)
cost_volume: (b,n,c3)
flow : (b,n,3)
Output:
points_concat:(b,n,mlp[-1])
'''
_, _, flow_encoding1,_ = self.sa1(pc, None, pc, flow)
_, _, flow_encoding2,_ = self.sa2(pc, None, pc, flow_encoding1) # b,n,16
points_concat = torch.cat([points_f1, cost_volume, upsampled_feat,flow,flow_encoding2],-1) # b,n,c1+c2+c3+3+16
points_concat = torch.unsqueeze(points_concat, 2) # B,n,1,c1+c2+c3+3+16
for i, conv in enumerate(self.mlp_conv):
points_concat = conv(points_concat)
points_concat = torch.squeeze(points_concat, 2)
return points_concat
class PointConv(nn.Module):
def __init__(self, nsample, in_channel, out_channel, weightnet = 16, bn = use_bn, use_leaky = True):
super(PointConv, self).__init__()
self.bn = bn
self.nsample = nsample
self.weightnet = WeightNet(3, weightnet)
self.linear = nn.Linear(weightnet * in_channel, out_channel)
if bn:
self.bn_linear = nn.BatchNorm1d(out_channel)
self.relu = nn.ReLU(inplace=True) if not use_leaky else nn.LeakyReLU(LEAKY_RATE, inplace=True)
def forward(self, xyz, points):
"""
PointConv without strides size, i.e., the input and output have the same number of points.
Input:
xyz: input points position data, [B, C, N]
points: input points data, [B, D, N]
Return:
new_xyz: sampled points position data, [B, C, S]
new_points_concat: sample points feature data, [B, D', S]
"""
B = xyz.shape[0]
N = xyz.shape[2]
xyz = xyz.permute(0, 2, 1)
points = points.permute(0, 2, 1) #permute将tensor维度换位
new_points, grouped_xyz_norm = group(self.nsample, xyz, points)
grouped_xyz = grouped_xyz_norm.permute(0, 3, 2, 1)
weights = self.weightnet(grouped_xyz)
new_points = torch.matmul(input=new_points.permute(0, 1, 3, 2), other = weights.permute(0, 3, 2, 1)).view(B, N, -1)
new_points = self.linear(new_points)
if self.bn:
new_points = self.bn_linear(new_points.permute(0, 2, 1))
else:
new_points = new_points.permute(0, 2, 1)
new_points = self.relu(new_points)
return new_points