forked from cientgu/GIQA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgmm_score.py
222 lines (164 loc) · 7.14 KB
/
gmm_score.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
#!/usr/bin/env python3
import os
import pathlib
from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter
import numpy as np
import torch
from scipy import linalg
# from scipy.misc import imread
from PIL import Image
from torch.nn.functional import adaptive_avg_pool2d
import pickle
from scipy.stats import multivariate_normal
from sklearn import mixture
try:
from tqdm import tqdm
except ImportError:
# If not tqdm is not available, provide a mock version of it
def tqdm(x): return x
from .inception import InceptionV3
def imread(filename):
return np.asarray(Image.open(filename).convert('RGB'), dtype=np.uint8)[..., :3]
def get_activations(files, model, batch_size, dims, cuda, verbose, pca_path, gmm_path, output_file):
model.eval()
batch_size = 50
if len(files) % batch_size != 0:
print(('Warning: number of images is not a multiple of the '
'batch size. Some samples are going to be ignored.'))
if batch_size > len(files):
print(('Warning: batch size is bigger than the data size. '
'Setting batch size to data size'))
batch_size = len(files)
n_batches = len(files) // batch_size
n_used_imgs = n_batches * batch_size
pca_gmm_path = gmm_path
pca_gmm = pickle.load(open(gmm_path, "rb"))
file_path = output_file
if pca_path != None:
pca = pickle.load(open(pca_path, "rb"))
score_list = []
with open(file_path, 'wt') as f:
for i in tqdm(range(n_batches)):
start = i * batch_size
end = start + batch_size
images = np.array([imread(str(f)).astype(np.float32) for f in files[start:end]])
# Reshape to (n_images, 3, height, width)
images = images.transpose((0, 3, 1, 2))
images /= 255
batch = torch.from_numpy(images).type(torch.FloatTensor)
if cuda:
batch = batch.cuda()
pred = model(batch)[0]
if pca_path != None:
pred = pca.transform(pred.cpu()[:,:,0,0])
prop = pca_gmm.score_samples(pred)
else:
prop = pca_gmm.score_samples(pred[:,:,0,0].cpu().numpy())
for image_i in range(0, batch_size):
this_score = str(float(prop[image_i]))
image_file = str(files[start+image_i]).split('/')[-1]
# new_name = str(int(prop[image_i]))+"_"+image_file
f.write("score of "+image_file+" is:\n")
f.write(this_score)
# f.write(new_name)
f.write("\n")
return pred_arr
import pickle
class RenameUnpickler(pickle.Unpickler):
def find_class(self, module, name):
renamed_module = module
if module == "sklearn.mixture.gaussian_mixture":
renamed_module = "sklearn.mixture._gaussian_mixture"
return super(RenameUnpickler, self).find_class(renamed_module, name)
def renamed_load(file_obj):
return RenameUnpickler(file_obj).load()
def load_models(inception_dims, useCuda, pca_path, gmm_path):
block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[inception_dims]
model = InceptionV3([block_idx])
if useCuda:
model.cuda()
pca_gmm_path = gmm_path
#pca_gmm = pickle.load(open(gmm_path, "rb"))
pca_gmm = renamed_load(open(gmm_path, "rb"))
if pca_path != None:
pca = pickle.load(open(pca_path, "rb"))
else:
pca = None
return model, pca, pca_gmm
def get_activation_preloaded_model(files, model, pca_gmm, pca=None, inception_dims=2048, useCuda=True, read_files=True):
if not isinstance(files, list):
files = [files]
singleFile = True
else:
singleFile = False
model.eval()
batch_size = len(files)
if read_files:
images = np.array([imread(str(f)).astype(np.float32) for f in files])
else:
images = np.array(files).astype(np.float32)
# Reshape to (n_images, 3, height, width)
#print(images.shape)
images = images.transpose((0, 3, 1, 2))
images /= 255
batch = torch.from_numpy(images).type(torch.FloatTensor)
if useCuda:
batch = batch.cuda()
pred = model(batch)[0]
if pca != None:
pred = pca.transform(pred.cpu()[:,:,0,0])
prop = pca_gmm.score_samples(pred)
else:
prop = pca_gmm.score_samples(pred[:,:,0,0].cpu().numpy())
if singleFile:
prop = prop[0]
return prop
def calculate_activation_statistics(files, model, batch_size, dims, cuda, pca_path, gmm_path, output_file):
verbose = False
act = get_activations(files, model, batch_size, dims, cuda, verbose, pca_path, gmm_path, output_file)
mu = np.mean(act, axis=0)
sigma = np.cov(act, rowvar=False)
return mu, sigma
def _compute_statistics_of_path(path, model, batch_size, dims, cuda, pca_path, gmm_path, output_file):
if path.endswith('.npz'):
f = np.load(path)
m, s = f['mu'][:], f['sigma'][:]
f.close()
else:
path = pathlib.Path(path)
# image_file = open(path)
# files = image_file.readlines()
files = list(path.glob('*.jpg')) + list(path.glob('*.png'))
m, s = calculate_activation_statistics(files, model, batch_size, dims, cuda, pca_path, gmm_path, output_file)
return m, s
def calculate_fid_given_paths(paths, batch_size, cuda, dims, pca_path, gmm_path, output_file):
for p in paths:
if not os.path.exists(p):
raise RuntimeError('Invalid path: %s' % p)
block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[dims]
model = InceptionV3([block_idx])
if cuda:
model.cuda()
m1, s1 = _compute_statistics_of_path(paths[0], model, batch_size, dims, cuda, pca_path, gmm_path, output_file)
return 777
if __name__ == '__main__':
parser = ArgumentParser(formatter_class=ArgumentDefaultsHelpFormatter)
parser.add_argument('path', type=str, nargs=1,
help=('Path to the generated images or '
'to .npz statistic files'))
parser.add_argument('--batch-size', type=int, default=50,
help='Batch size to use')
parser.add_argument('--dims', type=int, default=2048,
choices=list(InceptionV3.BLOCK_INDEX_BY_DIM),
help=('Dimensionality of Inception features to use. '
'By default, uses pool3 features'))
parser.add_argument('-c', '--gpu', default='', type=str,
help='GPU to use (leave blank for CPU only)')
parser.add_argument('--pca_path', type=str, default=None)
# "/mnt/blob/code/image-judge/gaussian/pca_stat/pca_all_95.pkl"
parser.add_argument('--gmm_path', type=str, default="/mnt/blob/code/image-judge/gaussian/pca_stat/stat_cat/act95_7")
parser.add_argument('--output_file', type=str, default="/mnt/blob/datasets/generation_results/score_results/try_out.txt")
args = parser.parse_args()
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
fid_value = calculate_fid_given_paths(args.path, args.batch_size, args.gpu != '', args.dims, args.pca_path, args.gmm_path, args.output_file)
print('FID: ', fid_value)