-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_workflow.py
130 lines (110 loc) · 4.29 KB
/
test_workflow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import subprocess
from datetime import datetime
import pandas as pd
from feast import FeatureStore
from feast.data_source import PushMode
def run_demo():
store = FeatureStore(repo_path="feature_repo")
print("\n--- Run feast apply ---")
subprocess.run(["feast", "apply"])
print("\n--- Historical features for training ---")
fetch_historical_features_entity_df(store, for_batch_scoring=False)
print("\n--- Historical features for batch scoring ---")
fetch_historical_features_entity_df(store, for_batch_scoring=True)
print("\n--- Load features into online store ---")
store.materialize_incremental(end_date=datetime.now())
print("\n--- Online features ---")
fetch_online_features(store)
print("\n--- Online features retrieved (instead) through a feature service---")
fetch_online_features(store, source="feature_service")
print(
"\n--- Online features retrieved (using feature service v3, which uses a feature view with a push source---"
)
fetch_online_features(store, source="push")
print("\n--- Simulate a stream event ingestion of the hourly stats df ---")
event_df = pd.DataFrame.from_dict(
{
"driver_id": [1001],
"event_timestamp": [
datetime.now(),
],
"created": [
datetime.now(),
],
"conv_rate": [1.0],
"acc_rate": [1.0],
"avg_daily_trips": [1000],
}
)
print(event_df)
store.push("driver_stats_push_source", event_df, to=PushMode.ONLINE_AND_OFFLINE)
print("\n--- Online features again with updated values from a stream push---")
fetch_online_features(store, source="push")
print("\n--- Run feast teardown ---")
subprocess.run(["feast", "teardown"])
def fetch_historical_features_entity_df(store: FeatureStore, for_batch_scoring: bool):
# Note: see https://docs.feast.dev/getting-started/concepts/feature-retrieval for more details on how to retrieve
# for all entities in the offline store instead
entity_df = pd.DataFrame.from_dict(
{
# entity's join key -> entity values
"driver_id": [1001, 1002, 1003],
# "event_timestamp" (reserved key) -> timestamps
"event_timestamp": [
datetime(2021, 4, 12, 10, 59, 42),
datetime(2021, 4, 12, 8, 12, 10),
datetime(2021, 4, 12, 16, 40, 26),
],
# (optional) label name -> label values. Feast does not process these
"label_driver_reported_satisfaction": [1, 5, 3],
# values we're using for an on-demand transformation
"val_to_add": [1, 2, 3],
"val_to_add_2": [10, 20, 30],
}
)
# For batch scoring, we want the latest timestamps
if for_batch_scoring:
entity_df["event_timestamp"] = pd.to_datetime("now", utc=True)
training_df = store.get_historical_features(
entity_df=entity_df,
features=[
"driver_hourly_stats:conv_rate",
"driver_hourly_stats:acc_rate",
"driver_hourly_stats:avg_daily_trips",
"transformed_conv_rate:conv_rate_plus_val1",
"transformed_conv_rate:conv_rate_plus_val2",
],
).to_df()
print(training_df.head())
def fetch_online_features(store, source: str = ""):
entity_rows = [
# {join_key: entity_value}
{
"driver_id": 1001,
"val_to_add": 1000,
"val_to_add_2": 2000,
},
{
"driver_id": 1002,
"val_to_add": 1001,
"val_to_add_2": 2002,
},
]
if source == "feature_service":
features_to_fetch = store.get_feature_service("driver_activity_v1")
elif source == "push":
features_to_fetch = store.get_feature_service("driver_activity_v3")
else:
features_to_fetch = [
"driver_hourly_stats:acc_rate",
"transformed_conv_rate:conv_rate_plus_val1",
"transformed_conv_rate:conv_rate_plus_val2",
]
returned_features = store.get_online_features(
features=features_to_fetch,
entity_rows=entity_rows,
).to_dict()
for key, value in sorted(returned_features.items()):
print(key, " : ", value)
if __name__ == "__main__":
run_demo()