forked from seungeunrho/RLfrombasics
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathworld.py
156 lines (128 loc) · 3.51 KB
/
world.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import random
import numpy as np
class _GridWorldBase():
def __init__(self):
self.x=0
self.y=0
def step(self, a):
# 0번 액션: 왼쪽, 1번 액션: 위, 2번 액션: 오른쪽, 3번 액션: 아래쪽
if a==0:
self.move_left()
elif a==1:
self.move_up()
elif a==2:
self.move_right()
elif a==3:
self.move_down()
reward = -1 # 보상은 항상 -1로 고정
done = self.is_done()
return (self.x, self.y), reward, done
def reset(self):
self.x = 0
self.y = 0
return (self.x, self.y)
class GridWorld1(_GridWorldBase):
def __init__(self):
super().__init__()
def move_right(self):
self.y += 1
if self.y > 3:
self.y = 3
def move_left(self):
self.y -= 1
if self.y < 0:
self.y = 0
def move_up(self):
self.x -= 1
if self.x < 0:
self.x = 0
def move_down(self):
self.x += 1
if self.x > 3:
self.x = 3
def is_done(self):
if self.x == 3 and self.y == 3:
return True
else :
return False
def get_state(self):
return (self.x, self.y)
class GridWorld2(_GridWorldBase):
def __init__(self):
super().__init__()
def move_right(self):
if self.y==1 and self.x in [0,1,2]:
pass
elif self.y==3 and self.x in [2,3,4]:
pass
elif self.y==6:
pass
else:
self.y += 1
def move_left(self):
if self.y==0:
pass
elif self.y==3 and self.x in [0,1,2]:
pass
elif self.y==5 and self.x in [2,3,4]:
pass
else:
self.y -= 1
def move_up(self):
if self.x==0:
pass
elif self.x==3 and self.y==2:
pass
else:
self.x -= 1
def move_down(self):
if self.x==4:
pass
elif self.x==1 and self.y==4:
pass
else:
self.x+=1
def is_done(self):
if self.x==4 and self.y==6:
return True
else:
return False
class Agent():
def __init__(self):
pass
def select_action(self):
coin = random.random()
if coin < 0.25:
action = 0
elif coin < 0.5:
action = 1
elif coin < 0.75:
action = 2
else:
action = 3
return action
class AgentBase():
def __init__(self):
self.q_table = np.zeros((5, 7, 4)) # q벨류를 저장하는 변수. 모두 0으로 초기화.
self.eps = 0.9
def select_action(self, s):
# eps-greedy로 액션을 선택해준다
x, y = s
coin = random.random()
if coin < self.eps:
action = random.randint(0,3)
else:
action_val = self.q_table[x,y,:]
action = np.argmax(action_val)
return action
def show_table(self):
# 학습이 각 위치에서 어느 액션의 q 값이 가장 높았는지 보여주는 함수
q_lst = self.q_table.tolist()
data = np.zeros((5,7))
for row_idx in range(len(q_lst)):
row = q_lst[row_idx]
for col_idx in range(len(row)):
col = row[col_idx]
action = np.argmax(col)
data[row_idx, col_idx] = action
print(data)