-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathget_esm.py
96 lines (89 loc) · 3.16 KB
/
get_esm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
from Bio.PDB import PDBParser
import torch
import esm
import warnings
from Bio.PDB.PDBExceptions import PDBConstructionWarning
#Load ESM-2 model
model, alphabet = esm.pretrained.esm2_t33_650M_UR50D()
batch_converter = alphabet.get_batch_converter()
model.eval()
model= model.to("cuda")
biopython_parser = PDBParser()
three_to_one = {'ALA': 'A',
'ARG': 'R',
'ASN': 'N',
'ASP': 'D',
'CYS': 'C',
'GLN': 'Q',
'GLU': 'E',
'GLY': 'G',
'HIS': 'H',
'ILE': 'I',
'LEU': 'L',
'LYS': 'K',
'MET': 'M',
'MSE': 'M', # this is almost the same AA as MET. The sulfur is just replaced by Selen
'PHE': 'F',
'PRO': 'P',
'PYL': 'O',
'SER': 'S',
'SEC': 'U',
'THR': 'T',
'TRP': 'W',
'TYR': 'Y',
'VAL': 'V',
'ASX': 'B',
'GLX': 'Z',
'XAA': 'X',
'XLE': 'J'}
def get_sequence(rec_path):
# structure = biopython_parser.get_structure('random_id', rec_path)
# structure = structure[0]
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=PDBConstructionWarning)
structure = biopython_parser.get_structure('random_id', rec_path)
rec = structure[0]
seq = ''
for i, chain in enumerate(rec):
for res_idx, residue in enumerate(chain):
if residue.get_resname() == 'HOH':
continue
residue_coords = []
c_alpha, n, c = None, None, None
for atom in residue:
if atom.name == 'CA':
c_alpha = list(atom.get_vector())
if atom.name == 'N':
n = list(atom.get_vector())
if atom.name == 'C':
c = list(atom.get_vector())
if c_alpha != None and n != None and c != None: # only append residue if it is an amino acid and not
try:
seq += three_to_one[residue.get_resname()]
except Exception as e:
seq += '-'
print("encountered unknown AA: ", residue.get_resname(), ' in the complex ', rec_path, '. Replacing it with a dash - .')
return seq
def get_esm(pdb_path):
seq = get_sequence(pdb_path)
complex_name = None
seq_data = [(complex_name, seq)]
batch_labels, batch_strs, batch_tokens = batch_converter(seq_data)
batch_lens = (batch_tokens != alphabet.padding_idx).sum(1)
with torch.no_grad():
batch_tokens = batch_tokens.to("cuda")
results = model(batch_tokens, repr_layers = [33], return_contacts = False)
token_representations = results["representations"][33]
residue_embeddings = token_representations[:, 1 : batch_lens[0] - 1, :].squeeze()
return torch.mean(residue_embeddings, dim =0)
def get_esm_from_sequence(seq):
complex_name = None
seq_data = [(complex_name, seq)]
batch_labels, batch_strs, batch_tokens = batch_converter(seq_data)
batch_lens = (batch_tokens != alphabet.padding_idx).sum(1)
with torch.no_grad():
batch_tokens = batch_tokens.to("cuda")
results = model(batch_tokens, repr_layers = [33], return_contacts = False)
token_representations = results["representations"][33]
residue_embeddings = token_representations[:, 1 : batch_lens[0] - 1, :].squeeze()
return torch.mean(residue_embeddings, dim =0)