You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Traceback (most recent call last):
File "demo.py", line 45, in
preds = model(image)
File "/usrhome/jingli/.conda/envs/202110-crnn-License-plate-env/lib/python3.6/site-packages/torch/nn/modules/module.py", line 532, in call
result = self.forward(*input, **kwargs)
File "/usrhome/jingli/.conda/envs/202110-crnn-License-plate-env/lib/python3.6/site-packages/torch/nn/parallel/data_parallel.py", line 140, in forward
return self.module(*inputs, **kwargs)
File "/usrhome/jingli/.conda/envs/202110-crnn-License-plate-env/lib/python3.6/site-packages/torch/nn/modules/module.py", line 532, in call
result = self.forward(*input, **kwargs)
File "/dm10801/B1_tinyAI_project/202110-cruiser/1.1creat_pytorch_module/models/crnn.py", line 87, in forward
output = self.rnn(conv)
File "/usrhome/jingli/.conda/envs/202110-crnn-License-plate-env/lib/python3.6/site-packages/torch/nn/modules/module.py", line 532, in call
result = self.forward(*input, **kwargs)
File "/usrhome/jingli/.conda/envs/202110-crnn-License-plate-env/lib/python3.6/site-packages/torch/nn/modules/container.py", line 100, in forward
input = module(input)
File "/usrhome/jingli/.conda/envs/202110-crnn-License-plate-env/lib/python3.6/site-packages/torch/nn/modules/module.py", line 532, in call
result = self.forward(*input, **kwargs)
File "/dm10801/B1_tinyAI_project/202110-cruiser/1.1creat_pytorch_module/models/crnn.py", line 14, in forward
recurrent, _ = self.rnn(input)
File "/usrhome/jingli/.conda/envs/202110-crnn-License-plate-env/lib/python3.6/site-packages/torch/nn/modules/module.py", line 532, in call
result = self.forward(*input, **kwargs)
File "/usrhome/jingli/.conda/envs/202110-crnn-License-plate-env/lib/python3.6/site-packages/torch/nn/modules/rnn.py", line 556, in forward
self.check_forward_args(input, hx, batch_sizes)
File "/usrhome/jingli/.conda/envs/202110-crnn-License-plate-env/lib/python3.6/site-packages/torch/nn/modules/rnn.py", line 508, in check_forward_args
self.check_input(input, batch_sizes)
File "/usrhome/jingli/.conda/envs/202110-crnn-License-plate-env/lib/python3.6/site-packages/torch/nn/modules/rnn.py", line 159, in check_input
self.input_size, input.size(-1)))
RuntimeError: input.size(-1) must be equal to input_size. Expected 512, got 64`
The text was updated successfully, but these errors were encountered:
我改了在cpu上运行和去掉covert(‘L’)
model = model.cuda()
print('loading pretrained model from %s' % model_path)
if params.multi_gpu:
model = torch.nn.DataParallel(model)
checkpoint =torch.load(model_path, map_location=torch.device('cpu'))
model.load_state_dict(checkpoint,False)
converter = utils.strLabelConverter(params.alphabet)
transformer = dataset.resizeNormalize((100, 32))
image = Image.open(image_path).convert('L')
image = Image.open(image_path)
image = transformer(image)
if torch.cuda.is_available():
image = image.cuda()
image = image.view(1, *image.size())
image = Variable(image)
log:
`CRNN(
(cnn): Sequential(
(conv0): Conv2d(3, 64, kernel_size=(5, 5), stride=(2, 2), padding=(2, 2))
(relu0): ReLU(inplace=True)
(pooling0): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
(conv1): Conv2d(64, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(relu1): ReLU(inplace=True)
(conv2): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(batchnorm2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu2): ReLU(inplace=True)
(conv3): Conv2d(64, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(pooling2): MaxPool2d(kernel_size=(2, 2), stride=(2, 1), padding=(0, 1), dilation=1, ceil_mode=False)
(conv4): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(batchnorm4): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv5): Conv2d(64, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(pooling3): MaxPool2d(kernel_size=(2, 2), stride=(2, 1), padding=(0, 1), dilation=1, ceil_mode=False)
(conv6): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(batchnorm6): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
(rnn): Sequential(
(0): BidirectionalLSTM(
(rnn): LSTM(512, 256, bidirectional=True)
(embedding): Linear(in_features=512, out_features=256, bias=True)
)
(1): BidirectionalLSTM(
(rnn): LSTM(256, 256, bidirectional=True)
(embedding): Linear(in_features=512, out_features=204, bias=True)
)
)
)
loading pretrained model from ./path/to/crnn.pth
Traceback (most recent call last):
File "demo.py", line 45, in
preds = model(image)
File "/usrhome/jingli/.conda/envs/202110-crnn-License-plate-env/lib/python3.6/site-packages/torch/nn/modules/module.py", line 532, in call
result = self.forward(*input, **kwargs)
File "/usrhome/jingli/.conda/envs/202110-crnn-License-plate-env/lib/python3.6/site-packages/torch/nn/parallel/data_parallel.py", line 140, in forward
return self.module(*inputs, **kwargs)
File "/usrhome/jingli/.conda/envs/202110-crnn-License-plate-env/lib/python3.6/site-packages/torch/nn/modules/module.py", line 532, in call
result = self.forward(*input, **kwargs)
File "/dm10801/B1_tinyAI_project/202110-cruiser/1.1creat_pytorch_module/models/crnn.py", line 87, in forward
output = self.rnn(conv)
File "/usrhome/jingli/.conda/envs/202110-crnn-License-plate-env/lib/python3.6/site-packages/torch/nn/modules/module.py", line 532, in call
result = self.forward(*input, **kwargs)
File "/usrhome/jingli/.conda/envs/202110-crnn-License-plate-env/lib/python3.6/site-packages/torch/nn/modules/container.py", line 100, in forward
input = module(input)
File "/usrhome/jingli/.conda/envs/202110-crnn-License-plate-env/lib/python3.6/site-packages/torch/nn/modules/module.py", line 532, in call
result = self.forward(*input, **kwargs)
File "/dm10801/B1_tinyAI_project/202110-cruiser/1.1creat_pytorch_module/models/crnn.py", line 14, in forward
recurrent, _ = self.rnn(input)
File "/usrhome/jingli/.conda/envs/202110-crnn-License-plate-env/lib/python3.6/site-packages/torch/nn/modules/module.py", line 532, in call
result = self.forward(*input, **kwargs)
File "/usrhome/jingli/.conda/envs/202110-crnn-License-plate-env/lib/python3.6/site-packages/torch/nn/modules/rnn.py", line 556, in forward
self.check_forward_args(input, hx, batch_sizes)
File "/usrhome/jingli/.conda/envs/202110-crnn-License-plate-env/lib/python3.6/site-packages/torch/nn/modules/rnn.py", line 508, in check_forward_args
self.check_input(input, batch_sizes)
File "/usrhome/jingli/.conda/envs/202110-crnn-License-plate-env/lib/python3.6/site-packages/torch/nn/modules/rnn.py", line 159, in check_input
self.input_size, input.size(-1)))
RuntimeError: input.size(-1) must be equal to input_size. Expected 512, got 64`
The text was updated successfully, but these errors were encountered: