-
Notifications
You must be signed in to change notification settings - Fork 72
/
Copy pathapply_bpe.py
executable file
·373 lines (301 loc) · 13.1 KB
/
apply_bpe.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Author: Rico Sennrich
"""Use operations learned with learn_bpe.py to encode a new text.
The text will not be smaller, but use only a fixed vocabulary, with rare words
encoded as variable-length sequences of subword units.
Reference:
Rico Sennrich, Barry Haddow and Alexandra Birch (2015). Neural Machine Translation of Rare Words with Subword Units.
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (ACL 2016). Berlin, Germany.
"""
from __future__ import unicode_literals, division
import sys
import os
import inspect
import codecs
import io
import argparse
import re
import warnings
# hack for python2/3 compatibility
from io import open
argparse.open = open
class BPE(object):
def __init__(self, codes, merges=-1, separator='@@', vocab=None, glossaries=None):
codes.seek(0)
offset=1
# check version information
firstline = codes.readline()
if firstline.startswith('#version:'):
self.version = tuple([int(x) for x in re.sub(r'(\.0+)*$','', firstline.split()[-1]).split(".")])
offset += 1
else:
self.version = (0, 1)
codes.seek(0)
self.bpe_codes = [tuple(item.strip('\r\n ').split(' ')) for (n, item) in enumerate(codes) if (n < merges or merges == -1)]
for i, item in enumerate(self.bpe_codes):
if len(item) != 2:
sys.stderr.write('Error: invalid line {0} in BPE codes file: {1}\n'.format(i+offset, ' '.join(item)))
sys.stderr.write('The line should exist of exactly two subword units, separated by whitespace\n')
sys.exit(1)
# some hacking to deal with duplicates (only consider first instance)
self.bpe_codes = dict([(code,i) for (i,code) in reversed(list(enumerate(self.bpe_codes)))])
self.bpe_codes_reverse = dict([(pair[0] + pair[1], pair) for pair,i in self.bpe_codes.items()])
self.separator = separator
self.vocab = vocab
self.glossaries = glossaries if glossaries else []
self.cache = {}
def process_line(self, line):
"""segment line, dealing with leading and trailing whitespace"""
out = ""
leading_whitespace = len(line)-len(line.lstrip('\r\n '))
if leading_whitespace:
out += line[:leading_whitespace]
out += self.segment(line)
trailing_whitespace = len(line)-len(line.rstrip('\r\n '))
if trailing_whitespace and trailing_whitespace != len(line):
out += line[-trailing_whitespace:]
return out
def segment(self, sentence):
"""segment single sentence (whitespace-tokenized string) with BPE encoding"""
segments = self.segment_tokens(sentence.strip('\r\n ').split(' '))
return ' '.join(segments)
def segment_tokens(self, tokens):
"""segment a sequence of tokens with BPE encoding"""
output = []
for word in tokens:
# eliminate double spaces
if not word:
continue
new_word = [out for segment in self._isolate_glossaries(word)
for out in encode(segment,
self.bpe_codes,
self.bpe_codes_reverse,
self.vocab,
self.separator,
self.version,
self.cache,
self.glossaries)]
for item in new_word[:-1]:
output.append(item + self.separator)
output.append(new_word[-1])
return output
def _isolate_glossaries(self, word):
word_segments = [word]
for gloss in self.glossaries:
word_segments = [out_segments for segment in word_segments
for out_segments in isolate_glossary(segment, gloss)]
return word_segments
def create_parser(subparsers=None):
if subparsers:
parser = subparsers.add_parser('apply-bpe',
formatter_class=argparse.RawDescriptionHelpFormatter,
description="learn BPE-based word segmentation")
else:
parser = argparse.ArgumentParser(
formatter_class=argparse.RawDescriptionHelpFormatter,
description="learn BPE-based word segmentation")
parser.add_argument(
'--input', '-i', type=argparse.FileType('r'), default=sys.stdin,
metavar='PATH',
help="Input file (default: standard input).")
parser.add_argument(
'--codes', '-c', type=argparse.FileType('r'), metavar='PATH',
required=True,
help="File with BPE codes (created by learn_bpe.py).")
parser.add_argument(
'--merges', '-m', type=int, default=-1,
metavar='INT',
help="Use this many BPE operations (<= number of learned symbols)"+
"default: Apply all the learned merge operations")
parser.add_argument(
'--output', '-o', type=argparse.FileType('w'), default=sys.stdout,
metavar='PATH',
help="Output file (default: standard output)")
parser.add_argument(
'--separator', '-s', type=str, default='@@', metavar='STR',
help="Separator between non-final subword units (default: '%(default)s'))")
parser.add_argument(
'--vocabulary', type=argparse.FileType('r'), default=None,
metavar="PATH",
help="Vocabulary file (built with get_vocab.py). If provided, this script reverts any merge operations that produce an OOV.")
parser.add_argument(
'--vocabulary-threshold', type=int, default=None,
metavar="INT",
help="Vocabulary threshold. If vocabulary is provided, any word with frequency < threshold will be treated as OOV")
parser.add_argument(
'--glossaries', type=str, nargs='+', default=None,
metavar="STR",
help="Glossaries. Words matching any of the words/regex provided in glossaries will not be affected "+
"by the BPE (i.e. they will neither be broken into subwords, nor concatenated with other subwords. "+
"Can be provided as a list of words/regex after the --glossaries argument. Enclose each regex in quotes.")
return parser
def get_pairs(word):
"""Return set of symbol pairs in a word.
word is represented as tuple of symbols (symbols being variable-length strings)
"""
pairs = set()
prev_char = word[0]
for char in word[1:]:
pairs.add((prev_char, char))
prev_char = char
return pairs
def encode(orig, bpe_codes, bpe_codes_reverse, vocab, separator, version, cache, glossaries=None):
"""Encode word based on list of BPE merge operations, which are applied consecutively
"""
if orig in cache:
return cache[orig]
if re.match('^({})$'.format('|'.join(glossaries)), orig):
cache[orig] = (orig,)
return (orig,)
if version == (0, 1):
word = tuple(orig) + ('</w>',)
elif version == (0, 2): # more consistent handling of word-final segments
word = tuple(orig[:-1]) + ( orig[-1] + '</w>',)
else:
raise NotImplementedError
pairs = get_pairs(word)
if not pairs:
return orig
while True:
bigram = min(pairs, key = lambda pair: bpe_codes.get(pair, float('inf')))
if bigram not in bpe_codes:
break
first, second = bigram
new_word = []
i = 0
while i < len(word):
try:
j = word.index(first, i)
new_word.extend(word[i:j])
i = j
except:
new_word.extend(word[i:])
break
if word[i] == first and i < len(word)-1 and word[i+1] == second:
new_word.append(first+second)
i += 2
else:
new_word.append(word[i])
i += 1
new_word = tuple(new_word)
word = new_word
if len(word) == 1:
break
else:
pairs = get_pairs(word)
# don't print end-of-word symbols
if word[-1] == '</w>':
word = word[:-1]
elif word[-1].endswith('</w>'):
word = word[:-1] + (word[-1].replace('</w>',''),)
if vocab:
word = check_vocab_and_split(word, bpe_codes_reverse, vocab, separator)
cache[orig] = word
return word
def recursive_split(segment, bpe_codes, vocab, separator, final=False):
"""Recursively split segment into smaller units (by reversing BPE merges)
until all units are either in-vocabulary, or cannot be split futher."""
try:
if final:
left, right = bpe_codes[segment + '</w>']
right = right[:-4]
else:
left, right = bpe_codes[segment]
except:
#sys.stderr.write('cannot split {0} further.\n'.format(segment))
yield segment
return
if left + separator in vocab:
yield left
else:
for item in recursive_split(left, bpe_codes, vocab, separator, False):
yield item
if (final and right in vocab) or (not final and right + separator in vocab):
yield right
else:
for item in recursive_split(right, bpe_codes, vocab, separator, final):
yield item
def check_vocab_and_split(orig, bpe_codes, vocab, separator):
"""Check for each segment in word if it is in-vocabulary,
and segment OOV segments into smaller units by reversing the BPE merge operations"""
out = []
for segment in orig[:-1]:
if segment + separator in vocab:
out.append(segment)
else:
#sys.stderr.write('OOV: {0}\n'.format(segment))
for item in recursive_split(segment, bpe_codes, vocab, separator, False):
out.append(item)
segment = orig[-1]
if segment in vocab:
out.append(segment)
else:
#sys.stderr.write('OOV: {0}\n'.format(segment))
for item in recursive_split(segment, bpe_codes, vocab, separator, True):
out.append(item)
return out
def read_vocabulary(vocab_file, threshold):
"""read vocabulary file produced by get_vocab.py, and filter according to frequency threshold.
"""
vocabulary = set()
for line in vocab_file:
word, freq = line.strip('\r\n ').split(' ')
freq = int(freq)
if threshold == None or freq >= threshold:
vocabulary.add(word)
return vocabulary
def isolate_glossary(word, glossary):
"""
Isolate a glossary present inside a word.
Returns a list of subwords. In which all 'glossary' glossaries are isolated
For example, if 'USA' is the glossary and '1934USABUSA' the word, the return value is:
['1934', 'USA', 'B', 'USA']
"""
# regex equivalent of (if word == glossary or glossary not in word)
if re.match('^'+glossary+'$', word) or not re.search(glossary, word):
return [word]
else:
segments = re.split(r'({})'.format(glossary), word)
segments, ending = segments[:-1], segments[-1]
segments = list(filter(None, segments)) # Remove empty strings in regex group.
return segments + [ending.strip('\r\n ')] if ending != '' else segments
if __name__ == '__main__':
currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
newdir = os.path.join(currentdir, 'subword_nmt')
if os.path.isdir(newdir):
warnings.simplefilter('default')
warnings.warn(
"this script's location has moved to {0}. This symbolic link will be removed in a future version. Please point to the new location, or install the package and use the command 'subword-nmt'".format(newdir),
DeprecationWarning
)
# python 2/3 compatibility
if sys.version_info < (3, 0):
sys.stderr = codecs.getwriter('UTF-8')(sys.stderr)
sys.stdout = codecs.getwriter('UTF-8')(sys.stdout)
sys.stdin = codecs.getreader('UTF-8')(sys.stdin)
else:
sys.stdin = io.TextIOWrapper(sys.stdin.buffer, encoding='utf-8')
sys.stderr = io.TextIOWrapper(sys.stderr.buffer, encoding='utf-8')
sys.stdout = io.TextIOWrapper(sys.stdout.buffer, encoding='utf-8', write_through=True, line_buffering=True)
parser = create_parser()
args = parser.parse_args()
# read/write files as UTF-8
args.codes = codecs.open(args.codes.name, encoding='utf-8')
if args.input.name != '<stdin>':
args.input = codecs.open(args.input.name, encoding='utf-8')
if args.output.name != '<stdout>':
args.output = codecs.open(args.output.name, 'w', encoding='utf-8')
if args.vocabulary:
args.vocabulary = codecs.open(args.vocabulary.name, encoding='utf-8')
if args.vocabulary:
vocabulary = read_vocabulary(args.vocabulary, args.vocabulary_threshold)
else:
vocabulary = None
if sys.version_info < (3, 0):
args.separator = args.separator.decode('UTF-8')
if args.glossaries:
args.glossaries = [g.decode('UTF-8') for g in args.glossaries]
bpe = BPE(args.codes, args.merges, args.separator, vocabulary, args.glossaries)
for line in args.input:
args.output.write(bpe.process_line(line))