layout | title | description | nav_order |
---|---|---|---|
page |
Tutorials / Demo |
Listing of Tutorials / Demo. |
2 |
- Lecture: L02
- Description: A simple translation app built without using Docker or Pipenv.
- GCP GitHub URL: Install App on VM Manually (T1)
- AWS GitHub URL: Install App on VM Manually (T1) - AWS
- Lecture: L02
- Description: A translation app using Pipenv, without Docker.
- GCP GitHub URL: Install App on VM using Pipenv (T2)
- AWS GitHub URL: Install App on VM using Pipenv (T2) - AWS
- Lecture: L03
- Description: Build a simple translation app, containerize it with Docker, and push the image to Docker Hub.
- GCP GitHub URL: Develop App using Containers (T3)
- AWS GitHub URL: Develop App using Containers (T3) - AWS
- Lecture: L03
- Description: A continuation of the Docker tutorial, running the containerized app in a VM.
- GCP GitHub URL: Run App on VM using Docker (T4)
- AWS GitHub URL: Run App on VM using Docker (T4) - AWS
- Lecture: L04
- Description: Build a Mega Pipeline App.
- GCP GitHub URL: Mega Pipeline App
- AWS GitHub URL: Work in Progress (WIP)
- Lecture: L05
- Description: Build a Mega Pipeline App with Flexible Workflow.
- GCP GitHub URL: Mega Pipeline App (Flexible Workflow)
- Lecture: L06
- Description: Learn how to use Label Studio for data labeling.
- GitHub URL: Label Studio [GCP and AWS]
- Lecture: L06
- Description: Learn about versioning practices in development. Particularly, how to use DVC for data versioning.
- GCP GitHub URL: DVC
- Lecture: L08
- Description: LLM Agents with Phidata (Notebook)
- Colab Notebook: LLM-Agents
- Lecture: L08
- Description: LLM Agents
- GCP GitHub URL: LLM-Agents
- Lecture: L09
- Description: LLM Fine Tuning using PEFT
- GCP GitHub URL: LLM Fine Tuning
- Lecture: L11
- Description: Model Compression and Distillation
- Colab Notebook: Model Compression and Distillation
- Lecture: L12
- Description: Classification Model, Experiment Tracking Colab Notebook A: Cheese Classification Models Colab Notebook B: Experiment Tracking with WANDB
- Lecture: L12
- Description: Serveless Model Training with Vertex AI
- GCP GitHub URL: Serverless Model Training
- Lecture: L13
- Description: Cloud Function and Cloud Run
- GCP GitHub URL: Cloud Function, Cloud Run
- Lecture: L15
- Description: Model Deployment using Vertex AI
- GCP GitHub URL: Model Deployment
- Lecture: L15
- Description: Vertex AI ML Workflow for pipeline. Data Processing, data collection, model training, model deployment.
- GCP GitHub URL: ML Workflow
- Lecture: -
- Description: Deploy your own LLM on VM. These are the steps to deploy a LLM on VM with all the scripts and code.
- GCP GitHub URL: LLM on VM
- Lecture: L16
- Description: LLM Finetuning Hooks A
- GCP GitHub URL: LLM Finetuning Hooks
- Lecture: L16
- Description: LLM Finetuning Hooks B
- GCP GitHub URL: LLM Finetuning Hooks
- Lecture: L18
- Description: Cheese App APIs
- GCP GitHub URL: App v2: FastAPI Backend
- Lecture: L18
- Description: Frontend Simple
- GCP GitHub URL: App v2: Frontend Simple
- Lecture: L18
- Description: Frontend App (React)
- GCP GitHub URL: App v2: Frontend React
- Lecture: L19
- Description: Deployment to GCP using Ansible. Manual steps to deploy the app to GCP and automate using Ansible.
- GCP GitHub URL: App v3: Deployment to GCP
- Lecture: L20
- Description: Deployment with Scaling using Kubernetes
- GCP GitHub URL: App v3: Deployment with Scaling using Kubernetes
- Lecture: L21
- Description: Continuous Integration and Continuous Deployment
- GCP GitHub URL: App v4: Continuous Integration and Continuous Deployment
- AWS GitHub URL: No K8s App: AWS - Continuous Integration and Continuous Deployment