-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo.html
60 lines (54 loc) · 2.71 KB
/
demo.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>Demo</title>
<link rel="stylesheet" href="styles_1.css">
<link rel="preconnect" href="https://fonts.googleapis.com">
<link rel="preconnect" href="https://fonts.gstatic.com" crossorigin>
<link href="https://fonts.googleapis.com/css2?family=Merriweather:ital@1&family=Montserrat&family=Sacramento&display=swap" rel="stylesheet">
<link rel="preconnect" href="https://fonts.googleapis.com">
<link rel="preconnect" href="https://fonts.googleapis.com">
<link rel="preconnect" href="https://fonts.gstatic.com" crossorigin>
<link href="https://fonts.googleapis.com/css2?family=Noto+Sans&display=swap" rel="stylesheet">
</head>
<body>
<center>
<img class="AI-gif" src="https://media.giphy.com/media/Jjis1wVslnaHF01Lgr/giphy.gif" alt="AI-gif">
<h1 class="heading">Have a look over this demo on YOLOv5!</h1>
<div class="top-container">
<p>These are some of the sample photos that we have provided as input inorder to test the trained YOLOv5 model and inturn it recognizes the elements in the photos and provides us the percentage of recognition.</p>
<p>This percentage is an indication for the efficiency of the developed model.</p>
</div>
<div class="photos-div">
<div class="top-photos">
<img class="P_1" src="images/P_1.jpg" alt="p_1">
<img class="P_2" src="images/P_2.jpg" alt="p_2">
</div>
<div class="bottom-photos">
<img class="P_3" src="images/P_3.jpg" alt="p_3">
<img class="P_4" src="images/P_4.jpg" alt="p_4">
</div>
</div>
<br>
<br>
<div class="bottom-container">
<p>Do you know how the new category of object classes get trained?</p>
<P>Have a look over the training process 👇</P>
<br>
<video controls autoplay muted loop src="Training.webm" height="300px" width ="500"></video>
<br>
<br>
<br>
<p>Not only static ones like photos, YOLOv5 model can also detect dynamic ones like videos and inturn it identifies the objects present in the videos and provides us the percentage of recognition</p>
<br>
<br>
<video controls autoplay muted loop src="AI_test_video.webm" height="300px" width ="500"></video>
<br>
<br>
<p>Head over to the link given below 👇 for downloading the pickle file</p>
<a class="demo_link_1 btn" href="pickle.html">Click here</a>
</div>
</center>
</body>
</html>