-
Notifications
You must be signed in to change notification settings - Fork 1k
/
Copy pathChinese_Remainder_Theorem.py
81 lines (54 loc) · 1.59 KB
/
Chinese_Remainder_Theorem.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
"""
Chinese Remainder Theorem: In number theory, the Chinese remainder theorem
states that if one knows the remainders of the Euclidean division
of an integer n by several integers, then one can determine uniquely
the remainder of the division of n by the product of these integers,
under the condition that the divisors are pairwise coprime.
Method : Chinese Remainder Theorem / Inverse Modulo Implementation
"""
def multiply_fun(li):
result = 1
for i in li:
result *= i
return result
def Chinese_Remainder(n, a):
sum = 0
pr = multiply_fun(n)
for n_i, a_i in zip(n, a):
p = pr / n_i
sum += a_i * muinv(p, n_i) * p
return int(sum % pr)
def muinv(a, b):
b0 = b
x0, x1 = 0, 1
if b == 1:
return 1
while a > 1:
q = a // b
a, b = b, a % b
x0, x1 = x1 - q * x0, x0
if x1 < 0:
x1 += b0
return x1
# ----------------------------- DRIVER CODE ---------------------------
if __name__ == "__main__":
k = int(input("Enter size of array : "))
n = list(map(int, input("Enter value of coprime divisors :") . split()))
a = list(map(int, input("Enter value of remainders :").split()))
ans = Chinese_Remainder(n, a)
print("x = ", ans)
'''
Time Complexity : O(N^2)
Space Complexity: O(N)
'''
"""
Sample Input / Output
Enter size of array : 3
Enter value of coprime divisors : 2 3 5
Enter value of remainders : 1 2 4
x = 29.0
Enter size of array : 5
Enter value of coprime divisors : 5 4 3 7 11
Enter value of remainders : 1 2 3 4 5
x = 1446.0
"""