-
Notifications
You must be signed in to change notification settings - Fork 1k
/
Copy path2D_RRT.py
206 lines (152 loc) · 4.53 KB
/
2D_RRT.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
"""
Rapidly-exploring Random Trees
Purpose: A robot is attempting to navigate its path from the start point to a specified goal region,
while avoiding the set of all obstacles.Will be Using tree structure
"""
import matplotlib.pyplot as plt
import math
import random
from shapely.geometry import Point
from shapely.geometry import Polygon, MultiPolygon, LineString
# tree structure definition
class Tree():
def __init__(self, data=Point(0,0), children=None, par=None):
self.data = data
self.children = []
if children is not None:
for child in children:
self.add_child(child)
self.par = par
def add_child(self, node):
self.children.append(node)
node.par = self
def __str__(self, level=0):
ret = "\t"*level+repr(self.data.x)+" "+repr(self.data.y)+"\n"
for child in self.children:
ret += child.__str__(level+1)
return ret
def __repr__(self):
return '<tree node representation>'
# to trace final path
def tb(self,n):
ax = []
ay = []
ax.append(n.data.x)
ay.append(n.data.y)
while n.data != self.data:
n = n.par
ax.append(n.data.x)
ay.append(n.data.y)
return ax,ay
# defining obstacles as a set of polygons
def obst(arr):
ans = []
for coord in arr:
m = Polygon(coord)
ans.append(m)
t = MultiPolygon(ans)
return t
# defining goal region as polygon
def dgoal(coord):
m = Polygon(coord)
t = MultiPolygon([m])
return t
# distance between two points
def distance(pt1,pt2):
ans = math.sqrt((pt1.x - pt2.x) ** 2 + (pt1.y-pt2.y) ** 2)
return ans
# finding nearest neighbour
def nearestNode(pt,root,mind):
if distance(root.data,pt) < mind:
mind = distance(root.data,pt)
ans = root
for i in root.children:
d = nearestNode(pt,i,mind)
if d[0] < mind:
mind = d[0]
ans = d[1]
return (mind, ans)
# check if point is within polygon
def IsInObstacle(arr,pt):
for i in arr.geoms:
if i.contains(pt):
return True
return False
# linking new point to existing tree
def chain(node,pt):
last = Tree(pt)
node.add_child(last)
return last
def RRT(start,goal,obstacle_list):
'''
The search space will be a rectangular space defined by
(0,0),(0,10),(10,0),(10,10)
'''
goalr = [(goal[0]-0.3,goal[1]-0.3),(goal[0]+0.3,goal[1]-0.3), (goal[0]+0.3,goal[1]+0.3), (goal[0]-0.3,goal[1]+0.3)]
Qgoal = dgoal(goalr)
obstacles = obst(obstacle_list)
cnt = 0
graph = Tree(Point(start[0],start[1]))
while cnt < 5000:
x = random.random() * 10
y = random.random() * 10
p = Point(x,y)
if IsInObstacle(obstacles, p):
continue
n = nearestNode(p, graph, 10**6)
line = LineString([n[1].data,p])
if n[0] >= 1:
p = line.interpolate(1)
x = p.x
y = p.y
line = LineString([n[1].data,p])
if line.crosses(obstacles):
continue
last = chain(n[1],p)
if IsInObstacle(Qgoal,p):
print("Found it!")
return graph.tb(last),Qgoal
cnt += 1
return graph.tb(last),Qgoal
def visualize(path,obstacle_list,Qgoal):
'''
The matplot code required to visulaize both the path and obstacles in
the environment go here.
'''
plt.figure()
plt.plot(path[0],path[1],"b.-")
m = obst(obstacle_list)
for i in m:
x,y = i.exterior.xy
plt.plot(x,y,"black")
for i in Qgoal:
x,y = i.exterior.xy
plt.plot(x,y,"red")
plt.show()
def main():
obstacle_list = [
[(2, 10), (7, 10), (6, 7), (4, 7), (4, 9), (2, 9)],
[(3, 1), (3, 6), (4, 6), (4, 1)],
[(7, 3), (7, 8), (9, 8), (9, 3)],
]
print("Sample space defined by a square grid of 10*10 units")
print("Enter start point: ")
x,y = map(int,input().split())
start = (x,y)
print("Enter goal point: ")
x,y = map(int,input().split())
goal = (x,y)
path = RRT(start,goal,obstacle_list)
visualize(path[0],obstacle_list,path[1])
if __name__ == "__main__":
main()
"""
Sample I/O:
Input -
start: 1 1
goal: 10 10
Output -
A graph plotted using matplotlib with required path avoiding obtsacles, and the sampled points.
Time Complexity: O(N)
Space Complexity: O(N)
"""