-
Notifications
You must be signed in to change notification settings - Fork 1k
/
Copy path2D_BFS.py
140 lines (106 loc) · 3.58 KB
/
2D_BFS.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
"""
Purpose: Given a binary matrix of N*M order where 0 is the wall and 1 is way.
Find the shortest distance from a source cell to a destination cell,
traversing through limited cells only. Also you can move only
up, down, left and right. If found then print the distance and
path in separate lines, else return -1.
"""
from collections import deque
# Main BFS function to find the path
def BFS(maze, src, des, way=1):
# Base case: is source has no way, return false
if maze[src[0]][src[1]] != way:
return False
# Dimeention of the matrix and a queue is initlized with the source vertex
n = len(maze)
m = len(maze[0])
queue = deque([(src[0], src[1], 0)])
# To keep a track of the visdited nodes and parents
visited = [[False] * m for i in range(n)]
parent = {}
# All possible moves from a cell
move = {(1, 0): 'D', (-1, 0): 'U', (0, 1): 'R', (0, -1): 'L'}
while queue:
# Extract the left most node from the queue
v = queue.popleft()
# If the node is destination, calculate the path and return
if (v[0], v[1]) == des:
path = ''
dis = v[2]
cur = (v[0], v[1])
# Calculate the path by backtracking with the parent dict
while cur != src:
prev_move = parent[cur]
m = (cur[0] - prev_move[0], cur[1] - prev_move[1])
path += move[m]
cur = prev_move
# Return the distance and path
return dis, path[::-1]
# For a given node check each possible move
for i in move.keys():
r = v[0] + i[0]
c = v[1] + i[1]
# If the next node inside the maze , has a way and not yet visited
# then mark it visited and push it in the queue
if 0 <= r < n and 0 <= c < m and maze[r][c] == way and not visited[r][c]:
visited[r][c] = True
parent[(r, c)] = (v[0], v[1])
queue.append((r, c, v[2] + 1))
# If the queue is empty, there is no way possible, return False
return False
# --------------------------------DRIVER CODE ---------------------------------
if __name__ == "__main__":
N, M = map(int, input("Enter the Dimension of the maze:- ").split())
print("Enter the Maze: ")
maze = []
# Input the Maze
for _ in range(N):
maze.append([int(i) for i in input().split()])
src = tuple(map(int, input("Enter the Source cell: ").split()))
des = tuple(map(int, input("Enter the Destination cell: ").split()))
ans = BFS(maze, src, des)
# If ans is false, i.e. no way is possible, else print distance and path
if ans is False:
print("No Path exists between", src, "and", des)
else:
dist = ans[0]
path = ans[1]
print("Disance= ", dist)
print("Path: ", path)
"""
Time Compexity: O(N*M)
Space Complexity: O(N*M)
Sample Input / Output
Enter the Dimension of the maze:- 5 5
Enter the Maze:
1 0 1 1 1
1 0 1 0 1
1 0 1 0 1
1 0 1 0 1
1 1 1 0 1
Enter the Source cell: 0 0
Enter the Destination cell: 4 4
Disance= 16
Path: DDDDRRUUUURRDDDD
Enter the Dimension of the maze:- 5 5
Enter the Maze:
1 0 1 1 1
1 0 1 0 1
1 0 0 0 1
1 0 1 0 1
1 1 1 0 1
Enter the Source cell: 0 0
Enter the Destination cell: 4 4
No Path exists between (0, 0) and (4, 4)
Enter the Dimension of the maze:- 5 8
Enter the Maze:
1 0 1 1 1 1 1 1
1 0 1 0 0 0 0 1
1 0 1 1 1 1 0 1
1 0 0 0 0 1 0 1
1 1 1 1 1 1 0 1
Enter the Source cell: 0 0
Enter the Destination cell: 4 7
Disance= 25
Path: DDDDRRRRRUULLLUURRRRRDDDD
"""