-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtimer.py
154 lines (121 loc) · 5.75 KB
/
timer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
"""
timing tools
"""
# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
r"""
Timer
^^^^^
"""
import logging
import time
from datetime import timedelta
from typing import Any, Dict, Optional, Union
import pytorch_lightning as pl
# from pytorch_lightning.trainer.states import RunningStage
# from pytorch_lightning.utilities import LightningEnum
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from pytorch_lightning.utilities import rank_zero_info
log = logging.getLogger(__name__)
class Timer(pl.Callback):
"""The Timer callback tracks the time spent in the training, validation, and test loops and interrupts the
Trainer if the given time limit for the training loop is reached.
Args:
duration: A string in the format DD:HH:MM:SS (days, hours, minutes seconds), or a :class:`datetime.timedelta`,
or a dict containing key-value compatible with :class:`~datetime.timedelta`.
interval: Determines if the interruption happens on epoch level or mid-epoch.
Can be either ``"epoch"`` or ``"step"``.
verbose: Set this to ``False`` to suppress logging messages.
Raises:
MisconfigurationException:
If ``interval`` is not one of the supported choices.
Example::
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import Timer
# stop training after 12 hours
timer = Timer(duration="00:12:00:00")
# or provide a datetime.timedelta
from datetime import timedelta
timer = Timer(duration=timedelta(weeks=1))
# or provide a dictionary
timer = Timer(duration=dict(weeks=4, days=2))
# force training to stop after given time limit
trainer = Trainer(callbacks=[timer])
# query training/validation/test time (in seconds)
timer.time_elapsed("train")
timer.start_time("validate")
timer.end_time("test")
"""
def __init__(
self,
duration: Optional[Union[str, timedelta, Dict[str, int]]] = None,
verbose: bool = True,
) -> None:
super().__init__()
if isinstance(duration, str):
dhms = duration.strip().split(":")
dhms = [int(i) for i in dhms]
duration = timedelta(days=dhms[0], hours=dhms[1], minutes=dhms[2], seconds=dhms[3])
if isinstance(duration, dict):
duration = timedelta(**duration)
self._duration = duration.total_seconds() if duration is not None else None
self._verbose = verbose
self._start_time = {'train': None}
self._end_time = {'train': None}
self._offset = 0
def start_time(self, ) -> Optional[float]:
"""Return the start time of a particular 'train' (in seconds)"""
return self._start_time['train']
def end_time(self, ) -> Optional[float]:
"""Return the end time of a particular 'train' (in seconds)"""
return self._end_time['train']
def time_elapsed(self, ) -> float:
"""Return the time elapsed for a particular 'train' (in seconds)"""
start = self.start_time()
end = self.end_time()
offset = self._offset
if start is None:
return offset
if end is None:
return time.monotonic() - start + offset
return end - start + offset
def time_remaining(self, ) -> Optional[float]:
"""Return the time remaining for a particular 'train' (in seconds)"""
if self._duration is not None:
return self._duration - self.time_elapsed()
def on_train_start(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None:
self._start_time['train'] = time.monotonic()
def on_train_end(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None:
self._end_time['train'] = time.monotonic()
def on_fit_start(self, trainer: "pl.Trainer", *args: Any, **kwargs: Any) -> None:
# this checks the time after the state is reloaded, regardless of the interval.
# this is necessary in case we load a state whose timer is already depleted
if self._duration is None:
return
self._check_time_remaining(trainer)
def on_train_batch_end(self, trainer: "pl.Trainer", *args: Any, **kwargs: Any) -> None:
self._check_time_remaining(trainer)
def state_dict(self) -> Dict[str, Any]:
return {"time_elapsed": {'train': self.time_elapsed()}}
def load_state_dict(self, state_dict: Dict[str, Any]) -> None:
time_elapsed = state_dict.get("time_elapsed", {})
self._offset = time_elapsed.get('train', 0)
def _check_time_remaining(self, trainer: "pl.Trainer") -> None:
assert self._duration is not None
should_stop = self.time_elapsed() >= self._duration
# should_stop = trainer.strategy.broadcast(should_stop)
trainer.should_stop = trainer.should_stop or should_stop
if should_stop and self._verbose:
elapsed = timedelta(seconds=int(self.time_elapsed()))
rank_zero_info(f"Time limit reached. Elapsed time is {elapsed}. Signaling Trainer to stop.")