forked from lkhphuc/pytorch-3d-point-cloud-generation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
233 lines (190 loc) · 8.22 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
"""Utilities for 2D-3D conversion, training and building models"""
import logging
import os
import numpy as np
import pandas as pd
import torch
from tensorboardX import SummaryWriter
from torch import nn, optim
from torch.optim import lr_scheduler
from torch.utils.data import DataLoader
import custom_scheduler
import data
import torchvision
from PCGModel import Structure_Generator
def make_folder(PATH):
if not os.path.exists(PATH):
os.makedirs(PATH)
def make_logger(PATH):
logger = logging.getLogger("logger")
logger.setLevel(logging.DEBUG)
if not logger.hasHandlers():
logger.addHandler(logging.FileHandler(filename=f"{PATH}.log"))
print("Create logger")
return logger
def make_summary_writer(EXPERIMENT):
writer = SummaryWriter(comment="_"+EXPERIMENT)
print("Create tensorboard logger")
return writer
def make_data_fixed(cfg):
ds_tr = data.PointCloud2dDataset(
cfg, loadNovel=False, loadFixedOut=True, loadTest=False)
dl_tr = DataLoader(
ds_tr, batch_size=cfg.chunkSize, shuffle=True,
drop_last=True, collate_fn=ds_tr.collate_fn_fixed, num_workers=2)
ds_test = data.PointCloud2dDataset(
cfg, loadNovel=False, loadFixedOut=True, loadTest=True)
dl_test = DataLoader(
ds_test, batch_size=cfg.chunkSize, shuffle=False,
drop_last=True, collate_fn=ds_test.collate_fn_fixed, num_workers=2)
print(f"Load fixed (stg1) data for category: {cfg.category}")
print(f"batch size:{cfg.batchSize}, chunk size: {cfg.chunkSize}")
return dl_tr, dl_test
def unpack_batch_fixed(batch, device):
input_images = batch['inputImage'].float().to(device)
depthGT = batch['depthGT'].float().to(device)
maskGT = batch['maskGT'].float().to(device)
return input_images, depthGT, maskGT
def make_data_novel(cfg):
ds_tr = data.PointCloud2dDataset(
cfg, loadNovel=True, loadFixedOut=False, loadTest=False)
dl_tr = DataLoader(
ds_tr, batch_size=cfg.chunkSize, shuffle=True,
drop_last=True, collate_fn=ds_tr.collate_fn, num_workers=2)
ds_test = data.PointCloud2dDataset(
cfg, loadNovel=True, loadFixedOut=False, loadTest=True)
dl_test = DataLoader(
ds_test, batch_size=cfg.chunkSize, shuffle=False,
drop_last=True, collate_fn=ds_test.collate_fn, num_workers=2)
print(f"Load novel (stg2) data for category: {cfg.category}")
print(f"batch size:{cfg.batchSize}, chunk size: {cfg.chunkSize}")
return dl_tr, dl_test
def unpack_batch_novel(batch, device):
input_images = batch['inputImage'].float().to(device)
renderTrans = batch['targetTrans'].float().to(device)
depthGT = batch['depthGT'].float().to(device)
maskGT = batch['maskGT'].float().to(device)
return input_images, renderTrans, depthGT, maskGT
def define_losses():
l1_loss = nn.L1Loss()
bce_loss = nn.BCEWithLogitsLoss()
return l1_loss, bce_loss
def build_structure_generator(cfg):
model = Structure_Generator(
outViewN=cfg.outViewN, outW=cfg.outW,
outH=cfg.outH, renderDepth=cfg.renderDepth)
statement = "Build Structure Generator"
if cfg.loadPath is not None:
LOAD_PATH = f"models/{cfg.loadPath}"
if cfg.loadEpoch is None:
model.load_state_dict(torch.load(f"{LOAD_PATH}/best.pth"))
statement += f" and load best weights from {LOAD_PATH}"
else:
model.load_state_dict(
torch.load(f"{LOAD_PATH}/{cfg.loadEpoch}.pth"))
statement += f" and load weights epoch {cfg.loadEpoch} from {LOAD_PATH}"
print(statement)
return model
def make_optimizer(cfg, model):
params = model.parameters()
if cfg.trueWD != 0:
statement = "Use true (decouple with L2 regularization) weight decay "
if cfg.optim.lower() in 'adam':
statement += "with Adam optimizer (AdamW)"
opt = optim.Adam(params, cfg.lr, weight_decay=0)
elif cfg.optim.lower() in 'sgd':
statement += f"with SGD optimizer (SGDW), momentum: {cfg.momentum}"
opt = optim.SGD(params, cfg.lr, cfg.momentum)
statement += f"\nLearning rate: {cfg.lr:.2e}, weight decay: {cfg.trueWD:.2e}"
else:
statement = "Use default (coupled with L2 regularization) weight decay "
if cfg.optim.lower() in 'adam':
statement += "with Adam optimizer (Adam)"
opt = optim.Adam(params, cfg.lr, weight_decay=cfg.wd)
elif cfg.optim.lower() in 'sgd':
statement += f"with SGD optimizer (SGD), momentum: {cfg.momentum}"
opt = optim.SGD(params, cfg.lr, cfg.momentum, weight_decay=cfg.wd)
statement += f"\nLearning rate: {cfg.lr:.2e}, weight decay: {cfg.wd:.2e}"
print(statement)
return opt
def make_lr_scheduler(cfg, optimizer):
if not cfg.lrSched:
return None
elif cfg.lrSched.lower() in 'annealing':
sched = lr_scheduler.ExponentialLR(optimizer, cfg.lrGamma)
statement = f"Exponential annealing learning rate \
with gamma:{cfg.lrGamma}"
elif cfg.lrSched.lower() in 'cyclical':
sched = custom_scheduler.CyclicLR(
optimizer, cfg.lrBase, cfg.lr,
cfg.lrStep, mode='exp_range', gamma=cfg.lrGamma)
statement = f"Exponential annealing + Cyclical learning rate ,\
with base_lr:{cfg.lrBase}, max_lr:{cfg.lr}, gamma: {cfg.lrGamma}"
elif cfg.lrSched.lower() in 'restart':
sched = custom_scheduler.CosineAnnealingWithRestartsLR(
optimizer, cfg.T_0, cfg.T_mult, cfg.lrBase)
statement = f"Cosine annealing + Restart learning rate\
with base_lr:{cfg.lrBase}, max_lr:{cfg.lr},\
T_0:{cfg.T_0}, T_mult:{cfg.T_mult}"
print(statement)
return sched
def save_best_model(model_path, model, df_hist):
if df_hist['val_loss'].tail(1).iloc[0] <= df_hist['val_loss'].min():
torch.save(model.state_dict(), f"{model_path}/best.pth")
def checkpoint_model(model_path, model, epoch, saveEpoch):
if (saveEpoch is not None) and (epoch % saveEpoch == 0):
torch.save(model.state_dict(), f"{model_path}/{epoch}.pth")
def log_hist(logger, df_hist):
last = df_hist.tail(1)
best = df_hist.sort_values('val_loss').head(1)
summary = pd.concat((last, best)).reset_index(drop=True)
summary['name'] = ['Last', 'Best']
logger.debug(summary[['name', 'epoch', 'train_loss', 'val_loss']])
logger.debug('')
def write_on_board_losses_stg1(writer, df_hist):
row = df_hist.tail(1).iloc[0]
writer.add_scalars('loss', {
'train': row.train_loss,
'val': row.val_loss,
}, row.epoch)
writer.add_scalars('loss_XYZ', {
'train': row.train_loss_XYZ,
'val': row.val_loss_XYZ,
}, row.epoch)
writer.add_scalars('loss_mask', {
'train': row.train_loss_mask,
'val': row.val_loss_mask,
}, row.epoch)
def write_on_board_losses_stg2(writer, df_hist):
row = df_hist.tail(1).iloc[0]
writer.add_scalars('loss', {
'train': row.train_loss,
'val': row.val_loss,
}, row.epoch)
writer.add_scalars('loss_depth', {
'train': row.train_loss_depth,
'val': row.val_loss_depth,
}, row.epoch)
writer.add_scalars('loss_mask', {
'train': row.train_loss_mask,
'val': row.val_loss_mask,
}, row.epoch)
def write_on_board_images_stg1(writer, images, epoch):
writer.add_image('RGB', images['RGB'], epoch)
writer.add_image('depth/GT', images['depthGT'], epoch)
writer.add_image('depth/pred', images['depth'], epoch)
writer.add_image('mask/GT', images['maskGT'], epoch)
writer.add_image('mask/pred', images['mask'], epoch)
writer.add_image('depth*mask', images['depth_mask'], epoch)
def write_on_board_images_stg2(writer, images, epoch):
writer.add_image('RGB', images['RGB'], epoch)
writer.add_image('depth/GT', images['depthGT'], epoch)
writer.add_image('depth/pred', images['depth'], epoch)
writer.add_image('mask/GT', images['maskGT'], epoch)
writer.add_image('mask/pred', images['mask'], epoch)
writer.add_image('mask/rendered', images['mask_rendered'], epoch)
def write_on_board_lr(writer, lr, iteration):
for i in range(len(lr)):
writer.add_scalar(f"lr_{i}", lr[i], iteration)
def make_grid(t):
return torchvision.utils.make_grid(t, normalize=True)