-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_pub_data_exp.py
192 lines (150 loc) · 10 KB
/
run_pub_data_exp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
#!/usr/bin/python3
import functools
from sklearn.preprocessing import StandardScaler
from category_encoders import LeaveOneOutEncoder
import argparse
from utils.pub_data_exp_utils import *
from multiprocessing import Pool
def parse_args():
parser = argparse.ArgumentParser(description="Run experiments on public data")
parser.add_argument("--data_dir", type=str, default="./data/pub_data",
help="Path to the directory containing the data")
parser.add_argument("--exp_dir", type=str, default="./data/pub_data/exps",
help="Path to the directory where the experiment data will be saved")
parser.add_argument("--seeds", type=str, help="Path to the file containing the seeds. Each seed should be in a separate line",
default="./data/seeds.txt")
parser.add_argument("--data_names", type=str, default="bikeshare,wine,support2,churn",
help="Comma separated list of dataset names")
parser.add_argument("--num_epochs", type=int, default=1000, help="Number of epochs for training")
parser.add_argument("--num_hidden", type=int, default=64, help="Number of hidden units in each layer")
parser.add_argument("--num_layers", type=int, default=3, help="Number of hidden layers")
parser.add_argument("--prior_dist", default="laplace", const="laplace", nargs="?",
choices=["laplace", "normal", "student_t"]
, help="Prior distribution for the weights. Options: laplace, normal, student_t")
parser.add_argument("--act_fn", default="swish", const="swish", nargs="?",
choices=["swish", "relu"],
help="Activation function for the hidden layers. Options: swish, relu, tanh, sigmoid")
parser.add_argument("--timeout", type=int, default=180, help="Timeout for hyperparameter optimization")
parser.add_argument("--n_trials", type=int, default=30, help="Number of trials for hyperparameter optimization")
parser.add_argument("--saved_config", default='0', const='0', nargs='?', choices=['0', '1'],
help="Whether to scale the output or not")
parser.add_argument("--horseshoe_bnn", default='0', const='0', nargs='?', choices=['0', '1'],
help="Whether to use horseshoe BNN or not")
return parser.parse_args()
def run_benchmark_exps(data_name, *, data_dir, seeds, hbnn_config_file, model_configs,
epochs, exp_dir, n_trials, use_horseshoe_bnn=False):
print(f"Running experiments on {data_name} dataset")
save_dir = f"{exp_dir}/{data_name}/"
pathlib.Path(save_dir).mkdir(parents=True, exist_ok=True)
pathlib.Path(f"{save_dir}/optuna").mkdir(parents=True, exist_ok=True)
pathlib.Path(f"{save_dir}/configs").mkdir(parents=True, exist_ok=True)
pathlib.Path(f"{save_dir}/results").mkdir(parents=True, exist_ok=True)
pathlib.Path(f"{save_dir}/ft_importance").mkdir(parents=True, exist_ok=True)
X, y, classification, cat_cols, batch_size = load_data(data_name, data_dir)
for seed in tqdm(seeds):
models_score = {"seed": [], "model": [], "score": []}
if classification:
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=seed, stratify=y,
shuffle=True)
else:
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=seed,
shuffle=True)
if cat_cols is not None:
cat_encoder = LeaveOneOutEncoder(cols=cat_cols).fit(X_train, y_train)
X_train = cat_encoder.transform(X_train)
X_test = cat_encoder.transform(X_test)
X_train, X_test = X_train.values.astype(np.float32), X_test.values.astype(np.float32)
y_train, y_test = y_train.values.astype(np.float32), y_test.values.astype(np.float32)
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
if use_horseshoe_bnn:
hidden_sizes = [model_configs["horseshoe_bnn"]["n_hidden"]] * model_configs["horseshoe_bnn"]["num_layers"]
config = {"n_hidden": hidden_sizes, "classification": classification}
hbnn_model, hbnn_score, _, = run_horsehoe_bnn_model(seed, hbnn_config_file, X_train, X_test,
y_train, y_test, epochs, batch_size,
config, data_name,
classification)
models_score["seed"].append(seed)
models_score["model"].append("Horseshoe BNN")
models_score["score"].append(hbnn_score)
# Feature Weights
beta_weights = hbnn_model.l1.beta.sample(model_configs["horseshoe_bnn"]["n_samples_testing"])
w_norm_hs_bnn = torch.mean(beta_weights, dim=0)
w_mean_hs_bnn = torch.linalg.vector_norm(w_norm_hs_bnn, dim=0).detach().cpu().numpy()
np.save(f"{save_dir}/ft_importance/horseshoe_bnn_s_{seed}.npy" ,w_mean_hs_bnn)
with open(f"{save_dir}/results/horseshoe_bnn_s_{seed}.csv", "w") as fp:
models_score_df = pd.DataFrame(models_score)
models_score_df.to_csv(fp, index=False)
fp.flush()
else:
J = np.corrcoef(X_train, rowvar=False)
np.fill_diagonal(J, 0.0)
J[np.isnan(J)] = 0.0
J_zeros = np.zeros_like(J)
bnn_states, bnn_disc_states, bnn_rmse, bnn_r2 = run_bnn_model(seed, save_dir, X_train, X_test,
y_train, y_test,
epochs, batch_size, J_zeros, model_configs["bnn"],
n_trials,
classification, bg=False)
bnn_bg_states, bnn_bg_disc_states, bnn_bg_rmse, bnn_bg_r2 = run_bnn_model(seed, save_dir, X_train,
X_test,
y_train, y_test,
epochs, batch_size, J,
model_configs["bnn + bg"], n_trials,
classification,
bg=True)
params_bnn = tree_utils.tree_stack(bnn_states)
# gammas_bnn = tree_utils.tree_stack(bnn_disc_states)
params_bnn_bg = tree_utils.tree_stack(bnn_bg_states)
# gammas_bnn_bg = tree_utils.tree_stack(bnn_bg_disc_states)
rf_model, rf_rmse = run_rf_model(seed, save_dir, X_train, X_test, y_train, y_test, n_trials,
classification)
models_score["seed"].append(seed)
models_score["model"].append("BNN w/o BG")
models_score["score"].append(bnn_rmse)
models_score["seed"].append(seed)
models_score["model"].append("BNN + BG")
models_score["score"].append(bnn_bg_rmse)
models_score["seed"].append(seed)
models_score["model"].append("RF")
models_score["score"].append(rf_rmse)
w_norm_bnn = jnp.mean(params_bnn["dropout"]["w"], axis=0)
w_mean_bnn = jax.device_get(jax.vmap(lambda x: jnp.linalg.norm(x))(w_norm_bnn))
np.save(f"{save_dir}/ft_importance/bnn_ft_importance_s_{seed}.npy",w_mean_bnn)
w_norm_bnn_bg = jnp.mean(params_bnn_bg["dropout"]["w"], axis=0)
w_mean_bnn_bg = jax.device_get(jax.vmap(lambda x: jnp.linalg.norm(x))(w_norm_bnn_bg))
np.save(f"{save_dir}/ft_importance/bg_bnn_ft_importance_s_{seed}.npy" ,w_mean_bnn_bg)
w_norm_rf = rf_model.feature_importances_
np.save(f"{save_dir}/ft_importance/rf_ft_importance_s_{seed}.npy", w_norm_rf)
with open(f"{save_dir}/results/bnn_rf_bg_s_{seed}.csv", "w") as fp:
models_score_df = pd.DataFrame(models_score)
models_score_df.to_csv(fp, index=False)
fp.flush()
print(f"Done for {data_name}!")
if __name__ == "__main__":
optuna.logging.set_verbosity(optuna.logging.WARNING)
args = parse_args()
seeds = []
with open(args.seeds, "r") as fp:
for line in fp:
seeds.append(int(line.strip()))
use_horseshoe_bnn = int(args.horseshoe_bnn) == 1
saved_config = int(args.saved_config) == 1
model_configs = {"bnn": {"n_hidden": args.num_hidden, "act_fn": args.act_fn, "num_layers": args.num_layers,
"prior_dist": args.prior_dist},
"bnn + bg": {"n_hidden": args.num_hidden, "act_fn": args.act_fn, "num_layers": args.num_layers,
"prior_dist": args.prior_dist},
"horseshoe_bnn": {"lr": 0.001, "n_hidden": args.num_hidden, "num_layers": args.num_layers, "n_samples_testing": 100}}
exp_dir = args.exp_dir
data_dir = args.data_dir
hbnn_config_file = f"{data_dir}/horseshoeBNN_config.yaml"
exp_fn = functools.partial(run_benchmark_exps, data_dir=data_dir, seeds=seeds,
hbnn_config_file=hbnn_config_file,
model_configs=model_configs, epochs=args.num_epochs, exp_dir=exp_dir,
n_trials=args.n_trials, use_horseshoe_bnn=use_horseshoe_bnn)
data_names = [data_name for data_name in args.data_names.split(",")]
pool = Pool(len(data_names))
pool.map(exp_fn, data_names)
pool.close()
pool.join()