forked from manoukianv/vescFirmware4OpenFFBoard
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgpdrive.c
641 lines (520 loc) · 17.5 KB
/
gpdrive.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
/*
Copyright 2018 Benjamin Vedder [email protected]
This file is part of the VESC firmware.
The VESC firmware is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
The VESC firmware is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "gpdrive.h"
#include "ch.h"
#include "hal.h"
#include "stm32f4xx_conf.h"
#include "digital_filter.h"
#include "utils.h"
#include "ledpwm.h"
#include "terminal.h"
#include "commands.h"
#include "timeout.h"
#include "mc_interface.h"
#include "timer.h"
#include <math.h>
#include <string.h>
#include <stdlib.h>
// Settings
#define SAMPLE_BUFFER_SIZE 2048
// Private types
typedef struct {
float current_set;
float voltage_now;
float voltage_int;
} cc_state;
typedef struct {
float buffer[SAMPLE_BUFFER_SIZE];
int read;
int write;
} sample_buffer;
// Private variables
static volatile mc_configuration *m_conf;
static volatile float m_fsw_now;
static volatile float m_mod_now;
static volatile float m_current_now;
static volatile float m_current_now_filtered;
static volatile bool m_init_done = false;
static volatile gpd_output_mode m_output_mode;
static volatile sample_buffer m_sample_buffer;
static volatile float m_buffer_int_scale;
static volatile bool m_is_running;
static volatile float m_output_now;
static volatile bool m_dccal_done = false;
static volatile int m_curr_samples;
static volatile int m_curr0_sum;
static volatile int m_curr1_sum;
static volatile int m_curr0_offset;
static volatile int m_curr1_offset;
#ifdef HW_HAS_3_SHUNTS
static volatile int m_curr2_sum;
static volatile int m_curr2_offset;
#endif
static volatile float m_last_adc_isr_duration;
static volatile cc_state m_current_state;
// Private functions
static void stop_pwm_hw(void);
static void adc_int_handler(void *p, uint32_t flags);
static void set_modulation(float mod);
static void do_dc_cal(void);
// Threads
static THD_WORKING_AREA(timer_thread_wa, 2048);
static THD_FUNCTION(timer_thread, arg);
static volatile bool timer_thd_stop;
void gpdrive_init(volatile mc_configuration *configuration) {
utils_sys_lock_cnt();
m_init_done = false;
// Restore timers
TIM_DeInit(TIM1);
TIM1->CNT = 0;
// Disable channel 2 pins
palSetPadMode(GPIOA, 9, PAL_MODE_OUTPUT_PUSHPULL);
palClearPad(GPIOA, 9);
palSetPadMode(GPIOB, 14, PAL_MODE_OUTPUT_PUSHPULL);
palClearPad(GPIOB, 14);
m_conf = configuration;
m_fsw_now = 40000;
m_mod_now = 0.0;
m_current_now = 0.0;
m_current_now_filtered = 0.0;
m_output_mode = GPD_OUTPUT_MODE_NONE;
memset((void*)&m_sample_buffer, 0, sizeof(m_sample_buffer));
m_buffer_int_scale = 1.0 / 128.0;
m_is_running = false;
m_output_now = 0.0;
m_curr0_sum = 0;
m_curr1_sum = 0;
m_curr_samples = 0;
m_curr0_offset = 0;
m_curr1_offset = 0;
m_dccal_done = false;
#ifdef HW_HAS_3_SHUNTS
m_curr2_sum = 0;
m_curr2_offset = 0;
#endif
m_last_adc_isr_duration = 0;
memset((void*)&m_current_state, 0, sizeof(m_current_state));
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
TIM_OCInitTypeDef TIM_OCInitStructure;
TIM_BDTRInitTypeDef TIM_BDTRInitStructure;
RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1, ENABLE);
TIM_TimeBaseStructure.TIM_Prescaler = 0;
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
TIM_TimeBaseStructure.TIM_Period = SYSTEM_CORE_CLOCK / (int)m_fsw_now;
TIM_TimeBaseStructure.TIM_ClockDivision = 0;
TIM_TimeBaseStructure.TIM_RepetitionCounter = 0;
TIM_TimeBaseInit(TIM1, &TIM_TimeBaseStructure);
TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
TIM_OCInitStructure.TIM_OutputNState = TIM_OutputNState_Enable;
TIM_OCInitStructure.TIM_Pulse = TIM1->ARR / 2;
TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;
TIM_OCInitStructure.TIM_OCNPolarity = TIM_OCNPolarity_High;
TIM_OCInitStructure.TIM_OCIdleState = TIM_OCIdleState_Set;
TIM_OCInitStructure.TIM_OCNIdleState = TIM_OCNIdleState_Set;
TIM_OC1Init(TIM1, &TIM_OCInitStructure);
TIM_OC2Init(TIM1, &TIM_OCInitStructure);
TIM_OC3Init(TIM1, &TIM_OCInitStructure);
TIM_OC4Init(TIM1, &TIM_OCInitStructure);
TIM_OC1PreloadConfig(TIM1, TIM_OCPreload_Enable);
TIM_OC2PreloadConfig(TIM1, TIM_OCPreload_Enable);
TIM_OC3PreloadConfig(TIM1, TIM_OCPreload_Enable);
TIM_OC4PreloadConfig(TIM1, TIM_OCPreload_Enable);
TIM_BDTRInitStructure.TIM_OSSRState = TIM_OSSRState_Enable;
TIM_BDTRInitStructure.TIM_OSSIState = TIM_OSSIState_Enable;
TIM_BDTRInitStructure.TIM_LOCKLevel = TIM_LOCKLevel_OFF;
TIM_BDTRInitStructure.TIM_DeadTime = conf_general_calculate_deadtime(HW_DEAD_TIME_NSEC, SYSTEM_CORE_CLOCK);
TIM_BDTRInitStructure.TIM_Break = TIM_Break_Disable;
TIM_BDTRInitStructure.TIM_BreakPolarity = TIM_BreakPolarity_High;
TIM_BDTRInitStructure.TIM_AutomaticOutput = TIM_AutomaticOutput_Disable;
TIM_BDTRConfig(TIM1, &TIM_BDTRInitStructure);
TIM_CCPreloadControl(TIM1, ENABLE);
TIM_ARRPreloadConfig(TIM1, ENABLE);
ADC_CommonInitTypeDef ADC_CommonInitStructure;
DMA_InitTypeDef DMA_InitStructure;
ADC_InitTypeDef ADC_InitStructure;
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_DMA2 | RCC_AHB1Periph_GPIOA | RCC_AHB1Periph_GPIOC, ENABLE);
RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1 | RCC_APB2Periph_ADC2 | RCC_APB2Periph_ADC3, ENABLE);
dmaStreamAllocate(STM32_DMA_STREAM(STM32_DMA_STREAM_ID(2, 4)),
5,
(stm32_dmaisr_t)adc_int_handler,
(void *)0);
DMA_InitStructure.DMA_Channel = DMA_Channel_0;
DMA_InitStructure.DMA_Memory0BaseAddr = (uint32_t)&ADC_Value;
DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t)&ADC->CDR;
DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralToMemory;
DMA_InitStructure.DMA_BufferSize = HW_ADC_CHANNELS;
DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;
DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord;
DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord;
DMA_InitStructure.DMA_Mode = DMA_Mode_Circular;
DMA_InitStructure.DMA_Priority = DMA_Priority_High;
DMA_InitStructure.DMA_FIFOMode = DMA_FIFOMode_Disable;
DMA_InitStructure.DMA_FIFOThreshold = DMA_FIFOThreshold_1QuarterFull;
DMA_InitStructure.DMA_MemoryBurst = DMA_MemoryBurst_Single;
DMA_InitStructure.DMA_PeripheralBurst = DMA_PeripheralBurst_Single;
DMA_Init(DMA2_Stream4, &DMA_InitStructure);
DMA_Cmd(DMA2_Stream4, ENABLE);
DMA_ITConfig(DMA2_Stream4, DMA_IT_TC, ENABLE);
// Note that the ADC is running at 42MHz, which is higher than the
// specified 36MHz in the data sheet, but it works.
ADC_CommonInitStructure.ADC_Mode = ADC_TripleMode_RegSimult;
ADC_CommonInitStructure.ADC_Prescaler = ADC_Prescaler_Div2;
ADC_CommonInitStructure.ADC_DMAAccessMode = ADC_DMAAccessMode_1;
ADC_CommonInitStructure.ADC_TwoSamplingDelay = ADC_TwoSamplingDelay_5Cycles;
ADC_CommonInit(&ADC_CommonInitStructure);
ADC_InitStructure.ADC_Resolution = ADC_Resolution_12b;
ADC_InitStructure.ADC_ScanConvMode = ENABLE;
ADC_InitStructure.ADC_ContinuousConvMode = DISABLE;
ADC_InitStructure.ADC_ExternalTrigConvEdge = ADC_ExternalTrigConvEdge_Falling;
ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_T1_CC2;
ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;
ADC_InitStructure.ADC_NbrOfConversion = HW_ADC_NBR_CONV;
ADC_Init(ADC1, &ADC_InitStructure);
ADC_InitStructure.ADC_ExternalTrigConvEdge = ADC_ExternalTrigConvEdge_None;
ADC_InitStructure.ADC_ExternalTrigConv = 0;
ADC_Init(ADC2, &ADC_InitStructure);
ADC_Init(ADC3, &ADC_InitStructure);
ADC_TempSensorVrefintCmd(ENABLE);
ADC_MultiModeDMARequestAfterLastTransferCmd(ENABLE);
hw_setup_adc_channels();
ADC_Cmd(ADC1, ENABLE);
ADC_Cmd(ADC2, ENABLE);
ADC_Cmd(ADC3, ENABLE);
TIM_Cmd(TIM1, ENABLE);
TIM_CtrlPWMOutputs(TIM1, ENABLE);
// Always sample ADC in the beginning of the PWM cycle
TIM1->CCR2 = 200;
utils_sys_unlock_cnt();
ENABLE_GATE();
DCCAL_OFF();
do_dc_cal();
// Start threads
timer_thd_stop = false;
chThdCreateStatic(timer_thread_wa, sizeof(timer_thread_wa), NORMALPRIO, timer_thread, NULL);
stop_pwm_hw();
// Check if the system has resumed from IWDG reset
if (timeout_had_IWDG_reset()) {
mc_interface_fault_stop(FAULT_CODE_BOOTING_FROM_WATCHDOG_RESET, false, false);
}
m_init_done = true;
}
void gpdrive_deinit(void) {
if (!m_init_done) {
return;
}
m_init_done = false;
timer_thd_stop = true;
while (timer_thd_stop) {
chThdSleepMilliseconds(1);
}
TIM_DeInit(TIM1);
TIM_DeInit(TIM12);
ADC_DeInit();
DMA_DeInit(DMA2_Stream4);
nvicDisableVector(ADC_IRQn);
dmaStreamRelease(STM32_DMA_STREAM(STM32_DMA_STREAM_ID(2, 4)));
// Restore pins
palSetPadMode(GPIOA, 9, PAL_MODE_ALTERNATE(GPIO_AF_TIM1) |
PAL_STM32_OSPEED_HIGHEST |
PAL_STM32_PUDR_FLOATING);
palSetPadMode(GPIOB, 14, PAL_MODE_ALTERNATE(GPIO_AF_TIM1) |
PAL_STM32_OSPEED_HIGHEST |
PAL_STM32_PUDR_FLOATING);
}
bool gpdrive_init_done(void) {
return m_init_done;
}
bool gpdrive_is_dccal_done(void) {
return m_dccal_done;
}
float gpdrive_get_switching_frequency_now(void) {
return m_fsw_now;
}
void gpdrive_set_configuration(volatile mc_configuration *configuration) {
// Stop everything first to be safe
m_output_mode = GPD_OUTPUT_MODE_NONE;
stop_pwm_hw();
utils_sys_lock_cnt();
m_conf = configuration;
utils_sys_unlock_cnt();
}
void gpdrive_output_sample(float sample) {
m_output_now = sample;
switch (m_output_mode) {
case GPD_OUTPUT_MODE_MODULATION:
set_modulation(sample);
break;
case GPD_OUTPUT_MODE_VOLTAGE:
set_modulation(sample / GET_INPUT_VOLTAGE());
break;
case GPD_OUTPUT_MODE_CURRENT:
m_current_state.current_set = sample;
m_is_running = true;
break;
default:
break;
}
}
void gpdrive_fill_buffer(float *samples, int sample_num) {
for (int i = 0;i < sample_num;i++) {
m_sample_buffer.buffer[m_sample_buffer.write++] = samples[i];
m_sample_buffer.write %= SAMPLE_BUFFER_SIZE;
}
}
void gpdrive_add_buffer_sample(float sample) {
m_sample_buffer.buffer[m_sample_buffer.write++] = sample;
m_sample_buffer.write %= SAMPLE_BUFFER_SIZE;
}
void gpdrive_add_buffer_sample_int(int sample) {
m_sample_buffer.buffer[m_sample_buffer.write++] = (float)sample * m_buffer_int_scale;
m_sample_buffer.write %= SAMPLE_BUFFER_SIZE;
}
void gpdrive_set_buffer_int_scale(float scale) {
m_buffer_int_scale = scale;
}
void gpdrive_set_switching_frequency(float freq) {
m_fsw_now = freq;
TIM1->ARR = SYSTEM_CORE_CLOCK / (int)m_fsw_now;
set_modulation(m_mod_now);
}
int gpdrive_buffer_size_left(void) {
return (m_sample_buffer.write > m_sample_buffer.read)
? m_sample_buffer.write - m_sample_buffer.read
: SAMPLE_BUFFER_SIZE - m_sample_buffer.read +m_sample_buffer.write;
}
void gpdrive_set_mode(gpd_output_mode mode) {
m_output_mode = mode;
if (m_output_mode == GPD_OUTPUT_MODE_NONE) {
stop_pwm_hw();
}
}
float gpdrive_get_current(void) {
return m_current_now;
}
float gpdrive_get_current_filtered(void) {
return m_current_now_filtered;
}
float gpdrive_get_modulation(void) {
return m_mod_now;
}
float gpdrive_get_last_adc_isr_duration(void) {
return m_last_adc_isr_duration;
}
// Private functions
static void set_modulation(float mod) {
utils_truncate_number_abs(&mod, m_conf->l_max_duty);
m_mod_now = mod;
if (m_output_mode == GPD_OUTPUT_MODE_NONE || mc_interface_get_fault() != FAULT_CODE_NONE) {
return;
}
if (m_conf->pwm_mode == PWM_MODE_BIPOLAR) {
uint32_t duty = (uint32_t) (((float)TIM1->ARR / 2.0) * mod + ((float)TIM1->ARR / 2.0));
TIM1->CCR1 = duty;
TIM1->CCR3 = duty;
// +
TIM_SelectOCxM(TIM1, TIM_Channel_1, TIM_OCMode_PWM1);
TIM_CCxCmd(TIM1, TIM_Channel_1, TIM_CCx_Enable);
TIM_CCxNCmd(TIM1, TIM_Channel_1, TIM_CCxN_Enable);
// -
TIM_SelectOCxM(TIM1, TIM_Channel_3, TIM_OCMode_PWM2);
TIM_CCxCmd(TIM1, TIM_Channel_3, TIM_CCx_Enable);
TIM_CCxNCmd(TIM1, TIM_Channel_3, TIM_CCxN_Enable);
} else {
uint32_t duty = (uint32_t)((float)TIM1->ARR * fabsf(mod));
TIM1->CCR1 = duty;
TIM1->CCR3 = duty;
if (mod >= 0) {
// +
TIM_SelectOCxM(TIM1, TIM_Channel_1, TIM_OCMode_PWM1);
TIM_CCxCmd(TIM1, TIM_Channel_1, TIM_CCx_Enable);
TIM_CCxNCmd(TIM1, TIM_Channel_1, TIM_CCxN_Enable);
// -
TIM_SelectOCxM(TIM1, TIM_Channel_3, TIM_OCMode_Inactive);
TIM_CCxCmd(TIM1, TIM_Channel_3, TIM_CCx_Enable);
TIM_CCxNCmd(TIM1, TIM_Channel_3, TIM_CCxN_Enable);
} else {
// +
TIM_SelectOCxM(TIM1, TIM_Channel_3, TIM_OCMode_PWM1);
TIM_CCxCmd(TIM1, TIM_Channel_3, TIM_CCx_Enable);
TIM_CCxNCmd(TIM1, TIM_Channel_3, TIM_CCxN_Enable);
// -
TIM_SelectOCxM(TIM1, TIM_Channel_1, TIM_OCMode_Inactive);
TIM_CCxCmd(TIM1, TIM_Channel_1, TIM_CCx_Enable);
TIM_CCxNCmd(TIM1, TIM_Channel_1, TIM_CCxN_Enable);
}
}
TIM_GenerateEvent(TIM1, TIM_EventSource_COM);
m_is_running = true;
}
static void stop_pwm_hw(void) {
m_is_running = false;
m_sample_buffer.write = 0;
m_sample_buffer.read = 0;
#ifdef HW_HAS_DRV8313
DISABLE_BR();
#endif
TIM_SelectOCxM(TIM1, TIM_Channel_1, TIM_ForcedAction_InActive);
TIM_CCxCmd(TIM1, TIM_Channel_1, TIM_CCx_Enable);
TIM_CCxNCmd(TIM1, TIM_Channel_1, TIM_CCxN_Disable);
TIM_SelectOCxM(TIM1, TIM_Channel_3, TIM_ForcedAction_InActive);
TIM_CCxCmd(TIM1, TIM_Channel_3, TIM_CCx_Enable);
TIM_CCxNCmd(TIM1, TIM_Channel_3, TIM_CCxN_Disable);
TIM_GenerateEvent(TIM1, TIM_EventSource_COM);
}
static void do_dc_cal(void) {
DCCAL_ON();
// Wait max 5 seconds
int cnt = 0;
while(IS_DRV_FAULT()){
chThdSleepMilliseconds(1);
cnt++;
if (cnt > 5000) {
break;
}
};
chThdSleepMilliseconds(1000);
m_curr0_sum = 0;
m_curr1_sum = 0;
#ifdef HW_HAS_3_SHUNTS
m_curr2_sum = 0;
#endif
m_curr_samples = 0;
while(m_curr_samples < 4000) {};
m_curr0_offset = m_curr0_sum / m_curr_samples;
m_curr1_offset = m_curr1_sum / m_curr_samples;
#ifdef HW_HAS_3_SHUNTS
m_curr2_offset = m_curr2_sum / m_curr_samples;
#endif
DCCAL_OFF();
m_dccal_done = true;
}
static void adc_int_handler(void *p, uint32_t flags) {
(void)p;
(void)flags;
uint32_t t_start = timer_time_now();
// Reset the watchdog
timeout_feed_WDT(THREAD_MCPWM);
int curr0 = GET_CURRENT1();
int curr1 = GET_CURRENT2();
#ifdef HW_HAS_3_SHUNTS
int curr2 = GET_CURRENT3();
#endif
m_curr0_sum += curr0;
m_curr1_sum += curr1;
#ifdef HW_HAS_3_SHUNTS
m_curr2_sum += curr2;
#endif
curr0 -= m_curr0_offset;
curr1 -= m_curr1_offset;
#ifdef HW_HAS_3_SHUNTS
curr2 -= m_curr2_offset;
#endif
m_curr_samples++;
// Update current
#ifdef HW_HAS_3_SHUNTS
float i1 = -(float)curr2;
#else
float i1 = -(float)curr1;
#endif
float i2 = (float)curr0;
m_current_now = utils_max_abs(i1, i2) * FAC_CURRENT;
UTILS_LP_FAST(m_current_now_filtered, m_current_now, m_conf->gpd_current_filter_const);
// Check for most critical faults here, as doing it in mc_interface can be too slow
// for high switching frequencies.
const float input_voltage = GET_INPUT_VOLTAGE();
static int wrong_voltage_iterations = 0;
if (input_voltage < m_conf->l_min_vin ||
input_voltage > m_conf->l_max_vin) {
wrong_voltage_iterations++;
if ((wrong_voltage_iterations >= 8)) {
mc_interface_fault_stop(input_voltage < m_conf->l_min_vin ?
FAULT_CODE_UNDER_VOLTAGE : FAULT_CODE_OVER_VOLTAGE, false, true);
}
} else {
wrong_voltage_iterations = 0;
}
if (m_conf->l_slow_abs_current) {
if (fabsf(m_current_now) > m_conf->l_abs_current_max) {
mc_interface_fault_stop(FAULT_CODE_ABS_OVER_CURRENT, false, true);
}
} else {
if (fabsf(m_current_now_filtered) > m_conf->l_abs_current_max) {
mc_interface_fault_stop(FAULT_CODE_ABS_OVER_CURRENT, false, true);
}
}
// Buffer handling
static bool buffer_was_empty = true;
static int interpol = 0;
static float buffer_last = 0.0;
static float buffer_next = 0.0;
interpol++;
if (interpol > m_conf->gpd_buffer_interpol) {
interpol = 0;
if (m_sample_buffer.read != m_sample_buffer.write) {
buffer_last = buffer_next;
buffer_next = m_sample_buffer.buffer[m_sample_buffer.read++];
m_sample_buffer.read %= SAMPLE_BUFFER_SIZE;
m_output_now = buffer_last;
m_is_running = true;
buffer_was_empty = false;
} else {
if (!buffer_was_empty) {
stop_pwm_hw();
}
buffer_was_empty = true;
}
} else if (!buffer_was_empty) {
m_output_now = utils_map((float)interpol,
0.0, (float)m_conf->gpd_buffer_interpol + 1.0,
buffer_last, buffer_next);
m_is_running = true;
}
if (m_is_running) {
gpdrive_output_sample(m_output_now);
if (m_output_mode == GPD_OUTPUT_MODE_CURRENT) {
float v_in = GET_INPUT_VOLTAGE();
float err = m_current_state.current_set - m_current_now_filtered;
m_current_state.voltage_now = m_current_state.voltage_int + err * m_conf->gpd_current_kp;
m_current_state.voltage_int += err * m_conf->gpd_current_ki * (1.0 / m_fsw_now);
utils_truncate_number_abs((float*)&m_current_state.voltage_int, v_in);
set_modulation(m_current_state.voltage_now / v_in);
}
}
ledpwm_update_pwm();
m_last_adc_isr_duration = timer_seconds_elapsed_since(t_start);
}
static THD_FUNCTION(timer_thread, arg) {
(void)arg;
chRegSetThreadName("gpdrive timer");
for(;;) {
if (timer_thd_stop) {
timer_thd_stop = false;
return;
}
static bool buffer_empty_before = true;
if (gpdrive_buffer_size_left() > 0 &&
gpdrive_buffer_size_left() < m_conf->gpd_buffer_notify_left) {
if (!buffer_empty_before) {
commands_send_gpd_buffer_notify();
}
buffer_empty_before = true;
} else {
buffer_empty_before = false;
}
chThdSleepMilliseconds(1);
}
}