forked from castorini/hedwig
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsent_level_rnn.py
28 lines (24 loc) · 1.15 KB
/
sent_level_rnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
import torch
import torch.nn as nn
class SentLevelRNN(nn.Module):
def __init__(self, config):
super().__init__()
sentence_num_hidden = config.sentence_num_hidden
word_num_hidden = config.word_num_hidden
target_class = config.target_class
self.sentence_context_weights = nn.Parameter(torch.rand(2 * sentence_num_hidden, 1))
self.sentence_context_weights.data.uniform_(-0.1, 0.1)
self.sentence_gru = nn.GRU(2 * word_num_hidden, sentence_num_hidden, bidirectional=True)
self.sentence_linear = nn.Linear(2 * sentence_num_hidden, 2 * sentence_num_hidden, bias=True)
self.fc = nn.Linear(2 * sentence_num_hidden , target_class)
self.soft_sent = nn.Softmax()
def forward(self,x):
sentence_h,_ = self.sentence_gru(x)
x = torch.tanh(self.sentence_linear(sentence_h))
x = torch.matmul(x, self.sentence_context_weights)
x = x.squeeze(dim=2)
x = self.soft_sent(x.transpose(1,0))
x = torch.mul(sentence_h.permute(2, 0, 1), x.transpose(1, 0))
x = torch.sum(x, dim=1).transpose(1, 0).unsqueeze(0)
x = self.fc(x.squeeze(0))
return x