-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathutils.py
130 lines (110 loc) · 4.99 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import numpy as np
import random
import re
from typing import List, Tuple, Union
def create_file_name(output_folder: str, dataset: str, model_name: str, in_context: int,
feature_num: int, configs: str, testing_sampling: str) -> str:
"""
Create a standardized file name based on input parameters.
Args:
output_folder (str): The folder where the file will be saved.
dataset (str): Name of the dataset.
model_name (str): Name of the model.
in_context (int): Number of in-context examples.
feature_num (int): Number of features.
configs (str): Prompt Configuration.
testing_sampling (str): Testing sampling number.
Returns:
str: The generated file name.
"""
model_name = model_name.split("/")[0]
filename = f"{output_folder}/{dataset}_{model_name}_{in_context}_{feature_num}_{configs}_{testing_sampling}.csv"
return filename
def generate_random_output(dataset: str) -> float:
"""
Generate a random output based on the dataset.
Args:
dataset (str): Name of the dataset.
Returns:
float: A randomly generated output value.
"""
params = {
"insurance": (13270.422265141257, 12110.011236694001),
"ChanceOfAdmition": (0.72435, 0.14260933017384092),
"usedcars": (50014.51, 42279.49)
}
mean, std = params.get(dataset, (0, 1))
return float(np.random.normal(loc=mean, scale=std))
def create_IO_example(dataset: str, x: List[Union[float, int, bool]], y: float, feature_num: int, Names: List[str], config: str, is_test: bool = False) -> Tuple[str, str]:
"""
Create an input-output example for a given dataset and configuration.
Args:
dataset (str): Name of the dataset.
x (List[Union[float, int]]): List of feature values.
y (float): Target value.
feature_num (int): Number of features.
Names (List[str]): List of feature names.
config (str): Configuration setting.
is_test (bool, optional): Whether this is a test example. Defaults to False.
Returns:
Tuple[str, str]: Input context and output value as strings.
"""
x_context = ""
for i in range(feature_num):
feature_name = Names[i]
feature_value = "?" if "Missing_Inputs" in config and random.random() > 0.5 else str(x[i])
x_context += f"{feature_name}: {feature_value}\n"
output_value = generate_random_output(dataset) if config == "Randomized_Ground_Truth" and not is_test else y
return x_context + f"{Names[-1]}: ", f"{output_value}\n\n"
def get_additional_instruction(dataset: str, target_name: str) -> str:
"""
Get additional instructions based on the dataset.
Args:
dataset (str): Name of the dataset.
target_name (str): Name of the target variable.
Returns:
str: Additional instruction string.
"""
instructions = {
"ChanceOfAdmition": f"The average of {target_name} is 0.74 with a standard deviation of 0.14.",
"insurance": f"The average of {target_name} is 13270.42 with a standard deviation of 12110.01.",
"usedcars": f"The average of {target_name} is 50014.51 with a standard deviation of 42279.49."
}
return instructions.get(dataset, "")
def create_explanation(target_name: str, additional_instruction: str, is_reasoning: bool) -> str:
"""
Create an explanation string based on the target and whether it involves reasoning.
Args:
target_name (str): Name of the target variable.
additional_instruction (str): Additional instructions to include.
is_reasoning (bool): Whether this involves reasoning.
Returns:
str: The created explanation string.
"""
base_explanation = f"The task is to provide your best number estimation for the {target_name}. "
if is_reasoning:
return (f"{base_explanation}Please explain your reasoning based on the given information and provide your "
f"final estimation as just one number (not a range) in the last sentence of your explanation as such: "
f"My final estimation is #. {additional_instruction}")
else:
return f"{base_explanation}Please provide just one number, without any additional text or explanation. {additional_instruction}"
def process_response(response_text: str, is_reasoning: bool) -> float:
"""
Process the response text to extract the numerical estimation.
Args:
response_text (str): The response text to process.
is_reasoning (bool): Whether the response includes reasoning.
Returns:
float: The extracted numerical estimation.
"""
if not is_reasoning:
response_text = response_text.split(":")[-1].split("is")[-1].strip("$. %").replace(",", "")
return float(response_text)
return extract_answer(response_text)
def extract_answer(response):
pattern = r'-?\d+(?:\.\d+)?'
numbers = re.findall(pattern, response.replace(",", ""))
try:
return float(numbers[-1])
except IndexError:
return None