-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathncNet.py
303 lines (241 loc) · 12.2 KB
/
ncNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
__author__ = "Yuyu Luo"
import pandas as pd
import sqlite3
import re
import os
import torch
from model.VisAwareTranslation import translate_sentence_with_guidance, translate_sentence, postprocessing
from model.Model import Seq2Seq
from model.Encoder import Encoder
from model.Decoder import Decoder
from preprocessing.build_vocab import build_vocab
from utilities.vis_rendering import VegaZero2VegaLite
from preprocessing.process_dataset import ProcessData4Training
from vega import VegaLite
os.chdir(os.path.dirname(os.path.abspath(__file__)))
class ncNet(object):
def __init__(self, trained_model):
self.data = None
self.db_id = ''
self.table_id = ''
self.db_tables_columns = None
self.db_tables_columns_types = None
self.trained_model = trained_model
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.SRC, self.TRG, self.TOK_TYPES, BATCH_SIZE, train_iterator, valid_iterator, test_iterator, self.my_max_length = build_vocab(
data_dir='./dataset/dataset_final/',
db_info='./dataset/database_information.csv',
batch_size=128,
max_input_length=128
)
INPUT_DIM = len(self.SRC.vocab)
OUTPUT_DIM = len(self.TRG.vocab)
HID_DIM = 256 # it equals to embedding dimension
ENC_LAYERS = 3
DEC_LAYERS = 3
ENC_HEADS = 8
DEC_HEADS = 8
ENC_PF_DIM = 512
DEC_PF_DIM = 512
ENC_DROPOUT = 0.1
DEC_DROPOUT = 0.1
enc = Encoder(INPUT_DIM,
HID_DIM,
ENC_LAYERS,
ENC_HEADS,
ENC_PF_DIM,
ENC_DROPOUT,
self.device,
self.TOK_TYPES,
self.my_max_length
)
dec = Decoder(OUTPUT_DIM,
HID_DIM,
DEC_LAYERS,
DEC_HEADS,
DEC_PF_DIM,
DEC_DROPOUT,
self.device,
self.my_max_length
)
SRC_PAD_IDX = self.SRC.vocab.stoi[self.SRC.pad_token]
TRG_PAD_IDX = self.TRG.vocab.stoi[self.TRG.pad_token]
self.ncNet = Seq2Seq(enc, dec, self.SRC, SRC_PAD_IDX, TRG_PAD_IDX, self.device).to(self.device) # define the transformer-based ncNet
self.ncNet.load_state_dict(torch.load(trained_model, map_location=self.device))
def specify_dataset(self, data_type, db_url = None, table_name = None, data = None, data_url = None):
'''
:param data_type: sqlite3, csv, json
:param db_url: db path for sqlite3 database, e.g., './dataset/database/flight/flight.sqlite'
:param table_name: the table name in a sqlite3
:param data: DataFrame for csv
:param data_url: data path for csv or json
:return: save the DataFrame in the self.data
'''
self.db_id = 'temp_' + table_name
self.table_id = table_name
if data_type == 'csv':
if data != None and data_url == None:
self.data = data
elif data == None and data_url != None:
self.data = pd.read_csv(data_url)
else:
raise ValueError('Please only specify one of the data or data_url')
elif data_type == 'json':
if data == None and data_url != None:
self.data = pd.read_json(data_url)
else:
raise ValueError('Read JSON from the json file, please only specify the "data_type" or "data_url"')
elif data_type == 'sqlite3':
# Create your connection.
try:
cnx = sqlite3.connect(db_url)
self.data = pd.read_sql_query("SELECT * FROM " + table_name, cnx)
except:
raise ValueError('Errors in read table from sqlite3 database. \ndb_url: {0}\n table_name : {1} '.format(data_url, table_name))
else:
if data != None and type(data) == pd.core.frame.DataFrame:
self.data = data
else:
raise ValueError('The data type must be one of the csv, json, sqlite3, or a DataFrame object.')
self.db_tables_columns_types = dict()
self.db_tables_columns_types[self.db_id] = dict()
self.db_tables_columns_types[self.db_id][table_name] = dict()
for col, _type in self.data.dtypes.items():
# print(col, _type)
if 'int' in str(_type).lower() or 'float' in str(_type).lower():
_type = 'numeric'
else:
_type = 'categorical'
self.db_tables_columns_types[self.db_id][table_name][col.lower()] = _type
# print(self.db_tables_columns_types)
self.data.columns = self.data.columns.str.lower() # to lowercase
self.db_tables_columns = {
self.db_id:{
self.table_id: list(self.data.columns)
}
}
if data_type == 'json' or data_type == 'sqlite3':
# write to sqlite3 database
if not os.path.exists('./dataset/database/'+self.db_id):
os.makedirs('./dataset/database/'+self.db_id)
conn = sqlite3.connect('./dataset/database/'+self.db_id+'/'+self.db_id+'.sqlite')
self.data.to_sql(self.table_id, conn, if_exists='replace', index=False)
self.DataProcesser = ProcessData4Training(db_url='./dataset/database')
self.db_table_col_val_map = dict()
table_cols = self.DataProcesser.get_table_columns(self.db_id)
self.db_table_col_val_map[self.db_id] = dict()
for table, cols in table_cols.items():
col_val_map = self.DataProcesser.get_values_in_columns(self.db_id, table, cols, conditions='remove')
self.db_table_col_val_map[self.db_id][table] = col_val_map
def show_dataset(self, top_rows=5):
return self.data[:top_rows]
def nl2vis(self, nl_question, chart_template=None, show_progress=None, visualization_aware_translation=True):
# process and the nl_question and the chart template as input.
# call the model to perform prediction
# render the predicted query
query2vl = VegaZero2VegaLite()
input_src, token_types = self.process_input(nl_question, chart_template)
if visualization_aware_translation == True:
# print("\nGenerate the visualization by visualization-aware translation:\n")
pred_query, attention, enc_attention = translate_sentence_with_guidance(
self.db_id, self.table_id, input_src, self.SRC, self.TRG, self.TOK_TYPES, token_types,
self.SRC, self.ncNet, self.db_tables_columns, self.db_tables_columns_types, self.device, self.my_max_length, show_progress
)
pred_query = ' '.join(pred_query).replace(' <eos>', '').lower()
if chart_template != None:
pred_query = postprocessing(pred_query, pred_query, True, input_src)
else:
pred_query = postprocessing(pred_query, pred_query, False, input_src)
pred_query = ' '.join(pred_query.replace('"', "'").split())
print('[NL Question]:', nl_question)
print('[Chart Template]:', chart_template)
print('[Predicted VIS Query]:', pred_query)
# print('[The Predicted VIS Result]:')
return VegaLite(query2vl.to_VegaLite(pred_query, self.data)), query2vl.to_VegaLite(pred_query, self.data)
# print('\n')
else:
# print("\nGenerate the visualization by greedy decoding:\n")
pred_query, attention, enc_attention = translate_sentence(
input_src, self.SRC, self.TRG, self.TOK_TYPES, token_types, self.ncNet, self.device, self.my_max_length
)
pred_query = ' '.join(pred_query).replace(' <eos>', '').lower()
if chart_template != None:
pred_query = postprocessing(pred_query, pred_query, True, input_src)
else:
pred_query = postprocessing(pred_query, pred_query, False, input_src)
pred_query = ' '.join(pred_query.replace('"', "'").split())
print('[NL Question]:', nl_question)
print('[Chart Template]:', chart_template)
print('[Predicted VIS Query]:', pred_query)
# print('[The Predicted VIS Result]:')
return VegaLite(query2vl.to_VegaLite(pred_query, self.data)), query2vl.to_VegaLite(pred_query, self.data)
def process_input(self, nl_question, chart_template):
def get_token_types(input_source):
# print('input_source:', input_src)
token_types = ''
for ele in re.findall('<n>.*</n>', input_source)[0].split(' '):
token_types += ' nl'
for ele in re.findall('<c>.*</c>', input_source)[0].split(' '):
token_types += ' template'
token_types += ' table table'
for ele in re.findall('<col>.*</col>', input_source)[0].split(' '):
token_types += ' col'
for ele in re.findall('<val>.*</val>', input_source)[0].split(' '):
token_types += ' value'
token_types += ' table'
token_types = token_types.strip()
return token_types
def fix_chart_template(chart_template = None):
query_template = 'mark [T] data [D] encoding x [X] y aggregate [AggFunction] [Y] color [Z] transform filter [F] group [G] bin [B] sort [S] topk [K]'
if chart_template != None:
try:
query_template = query_template.replace('[T]', chart_template['chart'])
except:
raise ValueError('Error at settings of chart type!')
try:
if 'sorting_options' in chart_template and chart_template['sorting_options'] != None:
order_xy = '[O]'
if 'axis' in chart_template['sorting_options']:
if chart_template['sorting_options']['axis'].lower() == 'x':
order_xy = '[X]'
elif chart_template['sorting_options']['axis'].lower() == 'y':
order_xy = '[Y]'
else:
order_xy = '[O]'
order_type = 'ASC'
if 'type' in chart_template['sorting_options']:
if chart_template['sorting_options']['type'].lower() == 'desc':
order_type = 'DESC'
elif chart_template['sorting_options']['type'].lower() == 'asc':
order_type = 'ASC'
else:
raise ValueError('Unknown order by settings, the order-type must be "desc", or "asc"')
query_template = query_template.replace('sort [S]', 'sort '+order_xy+' '+order_type)
except:
raise ValueError('Error at settings of sorting!')
return query_template
else:
return query_template
query_template = fix_chart_template(chart_template)
# get a list of mentioned values in the NL question
col_names, value_names = self.DataProcesser.get_mentioned_values_in_NL_question(
self.db_id, self.table_id, nl_question, db_table_col_val_map=self.db_table_col_val_map
)
col_names = ' '.join(str(e) for e in col_names)
value_names = ' '.join(str(e) for e in value_names)
input_src = "<N> {} </N> <C> {} </C> <D> {} <COL> {} </COL> <VAL> {} </VAL> </D>".format(nl_question, query_template, self.table_id, col_names, value_names).lower()
token_types = get_token_types(input_src)
return input_src, token_types
if __name__ == '__main__':
ncNet = ncNet(
trained_model='./save_models/trained_model.pt'
)
ncNet.specify_dataset(
data_type='sqlite3',
db_url='./dataset/database/car_1/car_1.sqlite',
table_name='cars_data'
)
ncNet.nl2vis(
nl_question='What is the average weight and year for each year. Plot them as line chart.',
chart_template=None
)