forked from hkust-itsc/itsc_facial_reg_server
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfacial_recognition_app.py
149 lines (124 loc) · 4.48 KB
/
facial_recognition_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import base64
import os
import sys
import cv2
import numpy as np
import DB_Handler_dict
from flask import Flask, render_template, request, jsonify
from config import clf
sys.path.append(os.path.join(os.path.dirname(__file__), '..', 'insightface', 'alignment'))
#from imutils_face_align_new import align_pic_new, align_pics, face_rect
sys.path.append(os.path.join(os.path.dirname(__file__), '..', 'insightface', 'deploy'))
#from face_model import FaceModel
import json
app = Flask(__name__)
db = DB_Handler_dict.Database_Handler()
demo = True
global encode_model, f_face_thres
def generate_res(tmp):
if type(tmp) is str:
args = {"message": tmp}
else:
args = dict(tmp)
return jsonify(args)
@app.route('/')
def index():
print("recieved ", request)
return "testing"
@app.route('/alluser', methods=['GET'])
def foo():
try:
print("getting all user info")
res = db.get_all_encodings()
return generate_res(res), 200
except Exception as ex:
print("ERR: ", ex)
return generate_res({"error": str(ex)}), 400
@app.route('/register', methods=['POST'])
def register():
try:
print("registering user")
uploaded_files = request.files.getlist("face_images")
data = request.form
eppn = data.get("eppn")
print("eppn: ", eppn, " with ", len(uploaded_files), " images")
if len(uploaded_files) == 0:
raise Exception("number of images must greater than 0")
if eppn is None:
raise Exception("must have eppn")
if not demo:
for img in uploaded_files:
print("inserting to db")
img = img.read()
image_dec = base64.b64decode(img)
data_np = np.fromstring(image_dec, dtype='uint8')
img = cv2.imdecode(data_np, 1)
modelImg = encode_model.get_input(img)
if modelImg is None: return None
faces_encodings = [encode_model.get_feature(modelImg)]
db.insert_encode(eppn, faces_encodings[0])
else:
print("recieved ", len(uploaded_files), " files: ")
for img in uploaded_files:
print(img)
print("content of the first file: (in base 64)\n", base64.b64decode(uploaded_files[0].read()))
return generate_res("registration success"), 200
except Exception as ex:
print("ERR: ", ex)
return generate_res({"error": str(ex)}), 400
@app.route('/upload', methods=['POST'])
def uploadfile():
try:
files = request.files.getlist("face_images")
print("files: ", len(files))
data = request.form
print("data: ",data.get('eppn'))
return generate_res("recieved"), 200
except Exception as ex:
print("ERR: ", ex)
return generate_res({"error": str(ex)}), 400
class FaceModelParam:
def __init__(self, gpu=0, img_size='112,112', model='/home/itsc/insightface/models/r100-arcface-emore/model,1',
ga_model='', threshold=1.2, det=0):
self.gpu = gpu
self.image_size = img_size
self.model = model
self.ga_model = ga_model
self.threshold = threshold
self.det = det
def init_encode():
global encode_model, f_face_thres
param = FaceModelParam()
# preload an image to speed up the alignment and encoding later
print('preloading an image to improve performance...')
imgname = './init.jpg'
dummy = align_pics(
imgname,
'./Output', output=False, model='retina')
encode_model = FaceModel(param)
dummy = encode_model.get_input(dummy)
if dummy is not None:
dummy = encode_model.get_feature(dummy)
img = cv2.imread(imgname)
img1 = img[:,:,::-1]
f_location = face_rect(img1, f_face_thres)
if not f_location: # empty => no large enough face found
print("Init Failure: face_rect()")
return
try:
top, right, bottom, left = f_location
crop_img = img[top:bottom, left:right]
print("Start Init Predict predict")
result = clf.predict(crop_img, encode_model = encode_model)
print("++++++++++================= {} after predict")
except:
print("Init Failure: clf.predict()")
return
print("Init Successfully")
from requests import get
if __name__ == '__main__':
if not demo:
init_encode()
ip = get('https://api.ipify.org').text
print("starting server at public ip: ", ip)
app.run('0.0.0.0', port=18080, debug=False)